欢迎您访问 最编程 本站为您分享编程语言代码,编程技术文章!
您现在的位置是: 首页

容斥原理

最编程 2024-03-26 10:34:07
...

容斥原理是一种重要的组合数学方法,可以让你求解任意大小的集合,或者计算复合事件的概率。

定理:

            在计数时,必须注意无一重复,无一遗漏。为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理

德摩根(De Morgan)定理

     若A和B是集合U的子集,则 


 

原理:

     1。如果被计数的事物有A、B两类,那么,A类B类元素个数总和= 属于A类元素个数+ 属于B类元素个数—既是A类又是B类的元素个数 。

               (A∪B = A+B - A∩B)

        2。如果被计数的事物有A、B、C三类,那么,A类和B类和C类元素个数总和= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元                素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。

               (A∪B∪C = A+B+C - A∩B - B∩C - C∩A + A∩B∩C)


应用:

一个简单的排列问题

        由0到9的数字组成排列,要求第一个数大于1,最后一个数小于8,一共有多少种排列?

         我们可以来计算它的逆问题,即第一个元素<=1或者最后一个元素>=8的情况。

         我们设第一个元素<=1时有X组排列,最后一个元素>=8时有Y组排列。那么通过容斥原理来解决就可以写成:

          

         经过简单的组合运算,我们得到了结果:

         

         然后被总的排列数10!减,就是最终的答案了。


2.        (0,1,2)序列问题

         长度为n的由数字0,1,2组成的序列,要求每个数字至少出现1次,这样的序列有多少种?

         同样的,我们转向它的逆问题。也就是不出现这些数字的序列 不出现其中某些数字的序列。

         我们定义Ai(i=0…2)表示不出现数字i的序列数,那么由容斥原理,我们得到该逆问题的结果为:

         

        可以发现每个Ai的值都为2^n(因为这些序列中只能包含两种数字)。而所有的两两组合为1(它们只包含1种                      数字)。最后,三个集合的交集为0。(因为它不包含数字,所以不存在)

        要记得我们解决的是它的逆问题,所以要用总数减掉,得到最终结果:

         

方程整数解问题

         给出一个方程:

        

         其中

        求这个方程的整数解有多少组。

        我们先不去理会xi<=8的条件,来考虑所有正整数解的情况。这个很容易用组合数来求解,我们要把20个元素分成6组,也就         是添加5块“夹板”,然后在25个位置中找5块“夹板”的位置。

         

         然后通过容斥原理来讨论它的逆问题,也就是x>=9时的解。

         我们定义Akxk>=9并且其他xi>=0时的集合,同样我们用上面的添加“夹板”法来计算Ak的大小,因为有9个位置已经           被xk所利用了,所以:

         

         然后计算两个这样的集合AkAp的交集:

         

         因为所有x的和不能超过20,所以三个或三个以上这样的集合时是不能同时出现的,它们的交集都为0。最后我们用总数剪         掉用容斥原理所求逆问题的答案,就得到了最终结果:

         

求指定区间内与n互素的数的个数:

       给出整数n和r。求区间[1;r]中与n互素的数的个数。

         去解决它的逆问题,求不与n互素的数的个数。

         考虑n的所有素因子pi(i=1…k)

         在[1;r]中有多少数能被pi整除呢?它就是:

       

         然而,如果我们单纯将所有结果相加,会得到错误答案。有些数可能被统计多次(被好几个素因子整除)。所以,我们要         运用容斥原理来解决。

         我们可以用2^k的算法求出所有的pi组合,然后计算每种组合的pi乘积,通过容斥原理来对结果进行加减处理。

         关于此问题的最终实现:

[cpp] view plaincopyprint?
  1. int solve (int n, int r) {  
  2.         vector<int> p;  
  3.         for (int i=2; i*i<=n; ++i)  
  4.                if (n % i == 0) {  
  5.                        p.push_back (i);  
  6.                        while (n % i == 0)  
  7.                                n /= i;  
  8.                }  
  9.         if (n > 1)  
  10.                p.push_back (n);  
  11.         int sum = 0;  
  12.         for (int msk=1; msk<(1<<p.size()); ++msk) {  
  13.                int mult = 1,  
  14.                        bits = 0;  
  15.                for (int i=0; i<(int)p.size(); ++i)  
  16.                        if (msk & (1<<i)) {  
  17.                                ++bits;  
  18.                                mult *= p[i];  
  19.                        }  
  20.                int cur = r / mult; 
  21.                if (bits % 2 == 1)  
  22.                      sum += cur;  
  23.                else 
  24.                        sum -= cur;  
    1.         } 
    2.         return r - sum;  
    3.   
    4. }  

求在给定区间内,能被给定集合至少一个数整除的数个数

       给出n个整数ai和整数r。求在区间[1;r]中,至少能被一个ai整除的数有多少。

         解决此题的思路和上题差不多,计算ai所能组成的各种集合(这里将集合中ai的最小公倍数作为除数)在区间中满足的数的个数,然后利用容                  斥原理实现加减。

         此题中实现所有集合的枚举,需要2^n的复杂度,求解lcm需要O(nlogr)的复杂度。

能满足一定数目匹配的字符串的个数问题

       给出n个匹配串,它们长度相同,其中有一些’?’表示待匹配的字母。然后给出一个整数k,求能正好匹配k个匹配串的字符串的个数。更进一                    步,求至少匹配k个匹配串的字符串的个数。

         首先我们会发现,我们很容易找到能匹配所有匹配串的字符串。只需要对比所有匹配串,去在每一列中找出现的字母(或者这一列全是’?’,或              者这一列出现了唯一的字母,否则这样的字符串就存在),最后所有字母组成的单词即为所求。

         现在我们来学习如何解决第一个问题:能正好匹配k个匹配串的字符串。

         我们在n个匹配串中选出k个,作为集合X,统计满足集合X中匹配的字符串数。求解这个问题时应用容斥原理,对X的所有超集进行运算,得到                 每个X集合的结果:

       

         此处f(Y)代表满足匹配集合Y的字符串数。

         如果我们将所有的ans(X)相加,就可以得到最终结果:

         

         这样,就得到了一个复杂度的解法。

        这个算法可以作一些改进,因为在求解ans(X)时有些Y集合是重复的。

         回到利用容斥原理公式可以发现,当选定一个Y时,所有 X的结果都是相同的,其符号都为。所以可以用如下公式求解:

         

        这样就得到了一个复杂度的解法。

        现在我们来求解第二个问题:能满足至少k个匹配的字符串有多少个。

        显然的,我们可以用问题一的方法来计算满足kn的所有结果。问题一的结论依然成立,不同之处在于这个问题中的X不是大小都为k的,而是>=k的所有集合。

        如此进行计算,最后将f(Y)作为另一个因子:将所有的ans做和,有点类似二项式展开:


在《具体数学》( Graham, Knuth, Patashnik. "Concrete Mathematics" [1998] )中,介绍了一个著名的关于二项式系数的公式:


根据这个公式,可以将前面的结果进行化简:


那么,对于这个问题,我们也得到了一个的解法:


路径的数目问题

       在一个方格阵中,有k个格子是不可穿越的墙。一开始在格子(1,1)(最左下角的格子)中有一个机器人。这个机器人只能向上或向右行进,最后它将到达           位于格子(n,m)的笼子里,其间不能经过障碍物格子。求一共有多少种路线可以到达终点。

         为了方便区分所有障碍物格子,我们建立坐标系,用(x,y)表示格子的坐标。

         首先我们考虑没有障碍物的时候:也就是如何求从一个点到另一个点的路径数。如果从一个点在一个方向要走x个格子,在另一个方向要走y个格子,那么通过简单的           组合原理可以得知结果为:

         

         现在来考虑有障碍物时的情况,我们可以利用容斥原理:求出至少经过一个障碍物时的路径数。

         对于这个例子,你可以枚举所有障碍物的子集,作为需要要经过的,计算经过该集合障碍物的路径数(求从原点到第一个障碍物的路径数、第一个障碍物到第二个障          碍物的路径数最后对这些路径数求乘积),然后通过容斥原理,对这些结果作加法或减法。

         然而,它是一个非多项式的解法,复杂度。下面我们将介绍一个多项式的解法

         我们运用动态规划:令d[i][j]代表从第i个点到第j个点,不经过任何障碍物时的路径数(当然除了ij)。那么我们总共需要k+2个点,包括k个障碍物点以及起点和终          点。

         首先我们算出从i点到j点的所有路径数,然后减掉经过障碍物的那些“坏”的路线。让我们看看如何计算“坏”的路线:枚举ij之间的所有障碍物点i<l<j,那么从ij                    的“坏”路径数就是所有d[i][l]d[l][j]的乘积最后求和。再被总路径数减掉就是d[i][j]的结果。

         我们已经知道计算总路径数的复杂度为 ,那么该解法的总复杂度为 

 

        (译注:当然也有O(nm)dp解法,根据nm

上一篇: 容斥原理

下一篇: 算法基础学习笔记 - ⑬ 高斯消除法 组合计数法 容差原则