欢迎您访问 最编程 本站为您分享编程语言代码,编程技术文章!
您现在的位置是: 首页

Python 迭代器、生成器

最编程 2024-04-18 16:35:31
...
国产数据库圈,为啥那么多水货?”

在程序设计中,通常会有 loop、iterate、traversal 和 recursion 等概念,他们各自的含义如下:

  • 循环(loop),指的是在满足条件的情况下,重复执行同一段代码。比如 Python 中的 while 语句。
  • 迭代(iterate),指的是按照某种顺序逐个访问列表中的每一项。比如 Python 中的 for 语句。
  • 递归(recursion),指的是一个函数不断调用自身的行为。比如,以编程方式输出著名的斐波纳契数列。
  • 遍历(traversal),指的是按照一定的规则访问树形结构中的每个节点,而且每个节点都只访问一次。

在其他语言中,for 与 while 都用于循环,而 Python 则没有类似其他语言的 for 循环,只有 while 来实现循环。在 Python 中, for 用来实现迭代,它的结构是 for ... in ...,其在迭代时会产生迭代器,实际是将可迭代对象转换成迭代器,再重复调用 next() 方法实现的。

在了解Python的数据结构时,容器(container)、可迭代对象(iterable)、迭代器(iterator)、生成器(generator)、列表/集合/字典推导式(list,set,dict comprehension)众多概念参杂在一起,难免让初学者一头雾水,我将用一篇文章试图将这些概念以及它们之间的关系捋清楚。

容器(container)

容器是一种把多个元素组织在一起的数据结构,容器中的元素可以逐个地迭代获取,可以用in, not in关键字判断元素是否包含在容器中。通常这类数据结构把所有的元素存储在内存中(也有一些特例,并不是所有的元素都放在内存,比如迭代器和生成器对象)在Python中,常见的容器对象有:

  • list, deque, ....
  • set, frozensets, ....
  • dict, defaultdict, OrderedDict, Counter, ....
  • tuple, namedtuple, …
  • str

容器比较容易理解,因为你就可以把它看作是一个盒子、一栋房子、一个柜子,里面可以塞任何东西。从技术角度来说,当它可以用来询问某个元素是否包含在其中时,那么这个对象就可以认为是一个容器,比如 list,set,tuples都是容器对象:

>>> assert 1 in [1, 2, 3]      # lists
>>> s = 'foobar'
>>> assert 'b' in s
>>> >>> d = {1: 'foo', 2: 'bar', 3: 'qux'}
>>> assert 1 in d
>>> assert 'foo' not in d  # 'foo' 不是dict中的元素

尽管绝大多数容器都提供了某种方式来获取其中的每一个元素,但这并不是容器本身提供的能力,而是可迭代对象赋予了容器这种能力,当然并不是所有的容器都是可迭代的,比如:Bloom filter,虽然Bloom filter可以用来检测某个元素是否包含在容器中,但是并不能从容器中获取其中的每一个值,因为Bloom filter压根就没把元素存储在容器中,而是通过一个散列函数映射成一个值保存在数组中。

可迭代对象(iterable)

刚才说过,很多容器都是可迭代对象,此外还有更多的对象同样也是可迭代对象,比如处于打开状态的files,sockets等等。但凡是可以返回一个迭代器的对象都可称之为可迭代对象,听起来可能有点困惑,没关系,先看一个例子

>>> x = [1, 2, 3]
>>> y = iter(x)
>>> z = iter(x)
>>> next(y)
1
>>> next(y)
2
>>> next(z)
1
>>> type(x)
<class 'list'>
>>> type(y)
<class 'list_iterator'>

这里x是一个可迭代对象,可迭代对象和容器一样是一种通俗的叫法,并不是指某种具体的数据类型,list是可迭代对象,dict是可迭代对象,set也是可迭代对象。y和z是两个独立的迭代器,迭代器内部持有一个状态,该状态用于记录当前迭代所在的位置,以方便下次迭代的时候获取正确的元素。迭代器有一种具体的迭代器类型,比如list_iterator,set_iterator。可迭代对象实现了__iter__方法,该方法返回一个迭代器对象。

当运行代码:

x = [1, 2, 3]
for elem in x:
    ...

实际执行情况是:

反编译该段代码,你可以看到解释器显示地调用GET_ITER指令,相当于调用iter(x),FOR_ITER指令就是调用next()方法,不断地获取迭代器中的下一个元素,但是你没法直接从指令中看出来,因为他被解释器优化过了。

>>> import dis
>>> x = [1, 2, 3]
>>> dis.dis('for _ in x: pass')
  1           0 SETUP_LOOP              12 (to 14)
              2 LOAD_NAME                0 (x)
              4 GET_ITER
        >>    6 FOR_ITER                 4 (to 12)
              8 STORE_NAME               1 (_)
             10 JUMP_ABSOLUTE            6
        >>   12 POP_BLOCK
        >>   14 LOAD_CONST               0 (None)
             16 RETURN_VALUE

可迭代对象具有__iter__ 方法,用于返回一个迭代器,或者定义了 __getitem__ 方法,可以按 index 索引的对象(并且能够在没有值时抛出一个 IndexError 异常),因此,可迭代对象就是能够通过它得到一个迭代器的对象。所以,可迭代对象都可以通过调用内建的 iter() 方法返回一个迭代器。

可迭代器对象具有如下的特性:

  • 可以 for 循环: for i in iterable;
  • 可以按 index 索引的对象,也就是定义了 __getitem__ 方法,比如 list,str;
  • 定义了__iter__方法,可以随意返回;
  • 可以调用 iter(obj) 的对象,并且返回一个iterator。

可以通过isinstance(obj, collections.Iterable)来判断对象是否为可迭代对象。

迭代器对象(iterator)

迭代器对象是一个含有 next (Python 2) 或者 __next__ (Python 3) 方法的对象。如果需要自定义迭代器,则需要满足如下迭代器协议:

  • 定义了__iter__ 方法,但是必须返回自身
  • 定义了 next 方法,在 python3.x 是 __next__。用来返回下一个值,并且当没有数据了,抛出 StopIteration
  • 可以保持当前的状态

可以通过 isinstance(obj, collections.Iterator) 来判断对象是否为迭代器。

(用一句来总结就是,一个实现了 __iter__() 方法的对象是可迭代的,一个实现了 next() 方法的对象则是迭代器。

那么什么迭代器呢?它是一个带状态的对象,他能在你调用next()方法的时候返回容器中的下一个值,任何实现了__iter____next__()(python2中实现next())方法的对象都是迭代器,__iter__返回迭代器自身,__next__返回容器中的下一个值,如果容器中没有更多元素了,则抛出StopIteration异常,至于它们到底是如何实现的这并不重要。

所以,迭代器就是实现了工厂模式的对象,它在你每次你询问要下一个值的时候给你返回。有很多关于迭代器的例子,比如itertools函数返回的都是迭代器对象。

生成无限序列:

>>> from itertools import count
>>> counter = count(start=13)
>>> next(counter)
13
>>> next(counter)
14

从一个有限序列中生成无限序列:

>>> from itertools import cycle
>>> colors = cycle(['red', 'white', 'blue'])
>>> next(colors)
'red'
>>> next(colors)
'white'
>>> next(colors)
'blue'
>>> next(colors)
'red'

从无限的序列中生成有限序列:

>>> from itertools import islice
>>> colors = cycle(['red', 'white', 'blue'])  # infinite
>>> limited = islice(colors, 0, 4)            # finite
>>> for x in limited:                         
...     print(x)
red
white
blue
red

为了更直观地感受迭代器内部的执行过程,我们自定义一个迭代器,以斐波那契数列为例:

class Fib:
    def __init__(self):
        self.prev = 0
        self.curr = 1

    def __iter__(self):
        return self

    def __next__(self):
        value = self.curr
        self.curr += self.prev
        self.prev = value
        return value

>>> f = Fib()
>>> list(islice(f, 0, 10))
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

Fib既是一个可迭代对象(因为它实现了__iter__方法),又是一个迭代器(因为实现了__next__方法)。实例变量prev和curr用户维护迭代器内部的状态。每次调用next()方法的时候做两件事:

  1. 为下一次调用next()方法修改状态
  2. 为当前这次调用生成返回结果 迭代器就像一个懒加载的工厂,等到有人需要的时候才给它生成值返回,没调用的时候就处于休眠状态等待下一次调用。

可迭代对象和迭代器的分开自定义

使用迭代器时,需要注意的一点是:

迭代器只能迭代一次,每次调用调用 next() 方法就会向前一步,不能回退,只能如过河的卒子,不断向前。另外,迭代器也不适合在多线程环境中对可变集合使用。

class MyRange(object):
    def __init__(self, n):
        self.idx = 0
        self.n = n

    def __iter__(self):
        return self

    def next(self):
        if self.idx < self.n:
            val = self.idx
            self.idx += 1
            return val
        else:
            raise StopIteration()

myRange = MyRange(3)

print [i for i in myRange]
print [i for i in myRange]

运行结果

True
[0, 1, 2]
[]

也就是说一个迭代器无法多次使用。为了解决这个问题,可以将可迭代对象和迭代器分开自定义:

class Zrange:
    def __init__(self, n):
        self.n = n

    def __iter__(self):
        return ZrangeIterator(self.n)

class ZrangeIterator:
    def __init__(self, n):
        self.i = 0
        self.n = n

    def __iter__(self):
        return self

    def next(self):
        if self.i < self.n:
            i = self.i
            self.i += 1
            return i
        else:
            raise StopIteration()

zrange = Zrange(3)
print zrange is iter(zrange)

print [i for i in zrange]
print [i for i in zrange]

生成器(generator)

生成器算得上是Python语言中最吸引人的特性之一,生成器其实是一种特殊的迭代器,不过这种迭代器更加优雅。它不需要再像上面的类一样写__iter__()__next__()方法了,只需要一个yiled关键字。 生成器一定是迭代器(反之不成立),因此任何生成器也是以一种懒加载的模式生成值。用生成器来实现斐波那契数列的例子是:

def fib():
    prev, curr = 0, 1
    while True:
        yield curr
        prev, curr = curr, curr + prev

>>> f = fib()
>>> list(islice(f, 0, 10))
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

fib就是一个普通的python函数,它特殊的地方在于函数体中没有return关键字,函数的返回值是一个生成器对象。当执行f=fib()返回的是一个生成器对象,此时函数体中的代码并不会执行,只有显示或隐示地调用next的时候才会真正执行里面的代码。

生成器在Python中是一个非常强大的编程结构,可以用更少地中间变量写流式代码,此外,相比其它容器对象它更能节省内存和CPU,当然它可以用更少的代码来实现相似的功能。现在就可以动手重构你的代码了,但凡看到类似:

def something():
    result = []
    for ... in ...:
        result.append(x)
    return result

都可以用生成器函数来替代

def iter_something():
    for ... in ...:
        yield x

生成器表达式(generator expression)

生成器表达式是列表推倒式的生成器版本,看起来像列表推导式,但是它返回的是一个生成器对象而不是列表对象。
生成器表达式有一个特点,就是惰性计算。

惰性计算这个特点很有用

惰性计算想像成水龙头,需要的时候打开,接完水了关掉,这时候数据流就暂停了,再需要的时候再打开水龙头,这时候数据仍是接着输出,不需要从头开始循环.

def add(s, x):
    return s + x

def gen():
    for  i in range(4):
        yield i

base = gen()
for n in [1, 10]:
    base = (add(i, n) for i in base)

print list(base)

结果输出是 [20,21,22,23]。很多人可能会想不明白,这里确实也很难理解,主要是因为生成器惰性计算的原因。生成器 base 在最后 list(base) 时被检索,此时生成器被赋值并开始计算。但此时 base 生成器一共被创建了三次,而且 n=10,这里注意 add(i+n) 绑定的是 n 这个变量而不是它当时的值(因为生成器在被检索时被赋值)。这样,首先通过 gen() 得到 (0, 1, 2, 3),然后是第一次循环得到 (10 + 0, 10 + 1, 10 + 2, 10 +3),最后是第二次循环得到 (10 + 10, 11 + 10, 12 + 10, 13 + 10)。

这里可以用管道的思路来理解这个例子。首先 gen() 函数是第一个生成器,下一个是第一次循环的 base = (add(i, n) for i in base), 最后一个生成器是第二次循环的 base = (add(i, n) for i in base)。这样就相当于三个管道依次连接,但是水(数据)还没有流过,现在到了 list(base),就相当于驱动器,打开了水的开关,这时候,按照管道的顺序,由第一个产生一个数据,yield 0,然后第一个管道关闭。之后传递给第二个管道就是第一次循环,此时执行了add(0, 10),然后水继续流,到第二次循环,再执行add(10, 10),此时到管道尾巴了,此时产生了第一个数据20,然后第一个管道再开放:yield 1, 流程跟上面的一样,依次产生21,22,23;直到没有数据。

上面的例子就类似与下面这样的简单写法:

def gen():
    for i in range(4):
        yield i  #  第一个管道

base = (add(i, 10) for i in base) #  第二个管道
base = (add(i, 10) for i in base) #  第三个管道

list(base) #  开关驱动器
>>> a = (x*x for x in range(10))
>>> a
<generator object <genexpr> at 0x401f08>
>>> sum(a)
285

迭代器节省内存的真相

迭代器能够很好的节能内存,这是因为它不必一次性将数据全部加载到内存中,而是在需要的时候产生一个结果。这在数据量的时候是非常有用的。

l = range(100000000)

for i in l:
    pass
 ```
 这个例子只是去遍历一个超大的列表,并没有做其他任何多余的操作。但是,在我的机器上运行时内存已经被占满,而且系统几乎卡死。但如果使用迭代器结果就不一样了:
 
 ```py
 l = xrange(100000000)

for i in l:
    pass
 ```
 这样修改后程序只在 4s 左右就执行完成了,并且对系统没有任何影响。

但是,需要注意的一点是:并非所有的迭代器都能很好的节省内存。例如:

```py
l = range(100000000)

for i in iter(l):
    pass
 ```
 这里虽然在迭代时把列表转化成了迭代器,但是所有的数据已经放在内存中,并不会带来任何的效益。

所以,并不是所有的迭代器都能节省内存,只有那些在需要时才产生一个结果的迭代器才有节省内存的特性。

### 迭代器速度

有听说迭代器的速度比列表、元组等容器对象快,这个说法太绝对,我也没有找到一个有力的证据证明迭代器总是比容器对象快。但在某些情况下,迭代器的效率确实会高些,容器对象需要把所有的数据加载到内存中,而读写内存也要消耗时间。因此,在某些情况下,速度会比较快。但是,要明白一点,不是所有的迭代器都能节省内存。

说到速度,这里提一点:在 python 中, map和列表解析要比手动的 for 运行更快,而且更加精简、优雅。因为他们的迭代在解析器内部是以 C 语言的速度执行的,而不是以手动 python 代码执行的,特别对于较大的数据集合,这也是使用 map 函数和列表解析的一个主要的性能优点。但需要注意的一点是,在 python3 之后,map 函数不再返回一个 list,而是返回一个迭代器。

## 总结
* 容器是一系列元素的集合,str、list、set、dict、file、sockets对象都可以看作是容器,容器都可以被迭代(用在for,while等语句中),因此他们被称为可迭代对象。
* 可迭代对象实现了`__iter__`方法,该方法返回一个迭代器对象。
* 迭代器持有一个内部状态的字段,用于记录下次迭代返回值,它实现了`__next__`和`__iter__`方法,迭代器不会一次性把所有元素加载到内存,而是需要的时候才生成返回结果。
* 生成器是一种特殊的迭代器,它的返回值不是通过return而是用yield。