欢迎您访问 最编程 本站为您分享编程语言代码,编程技术文章!
您现在的位置是: 首页

交叉熵损失函数深度解析

最编程 2024-02-02 09:13:37
...

交叉熵损失函数原理详解

之前在代码中经常看见交叉熵损失函数(CrossEntropy Loss),只知道它是分类问题中经常使用的一种损失函数,对于其内部的原理总是模模糊糊,而且一般使用交叉熵作为损失函数时,在模型的输出层总会接一个softmax函数,至于为什么要怎么做也是不懂,所以专门花了一些时间打算从原理入手,搞懂它,故在此写一篇博客进行总结,以便以后翻阅。


交叉熵简介

交叉熵是信息论中的一个重要概念,主要用于度量两个概率分布间的差异性,要理解交叉熵,需要先了解下面几个概念。


信息量

信息奠基人香农(Shannon)认为“信息是用来消除随机不确定性的东西”,也就是说衡量信息量的大小就是看这个信息消除不确定性的程度。

“太阳从东边升起”,这条信息并没有减少不确定性,因为太阳肯定是从东边升起的,这是一句废话,信息量为0。

”2018年中国队成功进入世界杯“,从直觉上来看,这句话具有很大的信息量。因为中国队进入世界杯的不确定性因素很大,而这句话消除了进入世界杯的不确定性,所以按照定义,这句话的信息量很大。

根据上述可总结如下:信息量的大小与信息发生的概率成反比。概率越大,信息量越小。概率越小,信息量越大。

设某一事件发生的概率为P(x),其信息量表示为:
I ( x ) = − log ⁡ ( P ( x ) ) I\left ( x \right ) = -\log\left ( P\left ( x \right ) \right ) I(x)=log(P(x))
其中 I ( x ) I\left ( x \right ) I(x)表示信息量,这里 log ⁡ \log log表示以e为底的自然对数。


信息熵

信息熵也被称为熵,用来表示所有信息量的期望。

期望是试验中每次可能结果的概率乘以其结果的总和。

所以信息量的熵可表示为:(这里的 X X X是一个离散型随机变量)
H ( X ) = − ∑ i = 1 n P ( x i ) log ⁡ ( P ( x i ) ) ) ( X = x 1 , x 2 , x 3 . . . , x n ) H\left ( \mathbf{X} \right ) = -\sum \limits_{i=1}^n P(x_{i}) \log \left ( P \left ( x_{i} \right ))) \qquad ( \mathbf{X}= x_{1},x_{2},x_{3}...,x_{n} \right) H(X)=i=1nP(xi)log(P(xi)))(X=x1,x2,x3...,xn)
使用明天的天气概率来计算其信息熵:

序号 事件 概率P 信息量
1 明天是晴天 0.5 − log ⁡ ( 0.5 ) -\log \left ( 0.5 \right ) log(0.5)
2 明天出雨天 0.2 − log ⁡ ( 0.2 ) -\log \left ( 0.2 \right ) log(0.2)
3 多云 0.3 − log ⁡ ( 0.3 ) -\log \left ( 0.3 \right ) log(0.3)

H ( X ) = − ( 0.5 ∗ log ⁡ ( 0.5 ) + 0.2 ∗ log ⁡ ( 0.2 ) + 0.3 ∗ log ⁡ ( 0.3 ) ) H\left ( \mathbf{X} \right ) = -\left ( 0.5 * \log \left ( 0.5 \right ) + 0.2 * \log \left ( 0.2 \right ) + 0.3 * \log \left ( 0.3 \right ) \right) H(X)=(0.5log(0.5)+0.2log(0.2)+0.3log(0.3))

对于0-1分布的问题,由于其结果只用两种情况,是或不是,设某一件事情发生的概率为 P ( x ) P\left ( x \right ) P(x),则另一件事情发生的概率为 1 − P ( x ) 1-P\left ( x \right ) 1P(x),所以对于0-1分布的问题,计算熵的公式可以简化如下:
H ( X ) = − ∑ n = 1 n P ( x i log ⁡ ( P ( x i ) ) ) = − [ P ( x ) log ⁡ ( P ( x ) ) + ( 1 − P ( x ) ) log ⁡ ( 1 − P ( x ) ) ] = − P ( x ) log ⁡ ( P ( x ) ) − ( 1 − P ( x ) ) log ⁡ ( 1 − P ( x ) ) H\left ( \mathbf{X} \right ) = -\sum \limits_{n=1}^n P(x_{i}\log \left ( P \left ( x_{i} \right )) \right) \\ = -\left [ P\left ( x \right) \log \left ( P\left ( x \right ) \right ) + \left ( 1 - P\left ( x \right ) \right) \log \left ( 1-P\left ( x \right ) \right ) \right] \\ = -P\left ( x \right) \log \left ( P\left ( x \right ) \right ) - \left ( 1 - P\left ( x \right ) \right) \log \left ( 1-P\left ( x \right ) \right) H(X)=n=1nP(xilog(P(xi)))=[P(x)log(P(x))+(1P(x))log(1P(x))]=P(x)log(P(x))(1P(x))log(1P(x))


相对熵(KL散度)

如果对于同一个随机变量 X X X有两个单独的概率分布 P ( x ) P\left(x\right) P(x) Q ( x ) Q\left(x\right) Q(x),则我们可以使用KL散度来衡量这两个概率分布之间的差异

下面直接列出公式,再举例子加以说明。
D K L ( p ∣ ∣ q ) = ∑ i = 1 n p ( x i ) log ⁡ ( p ( x i ) q ( x i ) ) D_{KL}\left ( p || q \right) = \sum \limits_{i=1}^n p\left ( x_{i}\right ) \log \left ( \frac{p\left ( x_{i} \right )}{q\left ( x_{i} \right )} \right ) DKL(pq)=i=1np(xi)log(q(xi)p(xi))
在机器学习中,常常使用 P ( x ) P\left(x\right) P(x)来表示样本的真实分布, Q ( x ) Q \left(x\right) Q(x)来表示模型所预测的分布,比如在一个三分类任务中(例如,猫狗马分类器), x 1 , x 2 , x 3 x_{1}, x_{2}, x_{3} x1,x2,x3分别代表猫,狗,马,例如一张猫的图片真实分布 P ( X ) = [ 1 , 0 , 0 ] P\left(X\right) = [1, 0, 0] P(X)=[1,0,0], 预测分布 Q ( X ) = [ 0.7 , 0.2 , 0.1 ] Q\left(X\right) = [0.7, 0.2, 0.1] Q(X)=[0.7,0.2,0.1],计算KL散度:
D K L ( p ∣ ∣ q ) = ∑ i = 1 n p ( x i ) log ⁡ ( p ( x i ) q ( x i ) ) = p ( x 1 ) log ⁡ ( p ( x 1 ) q ( x 1 ) ) + p ( x 2 ) log ⁡ ( p ( x 2 ) q ( x 2 ) ) + p ( x 3 ) log ⁡ ( p ( x 3 ) q ( x 3 ) ) = 1 ∗ log ⁡ ( 1 0.7 ) = 0.36 D_{KL}\left ( p || q \right) = \sum \limits_{i=1}^n p\left ( x_{i}\right ) \log \left ( \frac{p\left ( x_{i} \right )}{q\left ( x_{i} \right )} \right ) \\ = p\left ( x_{1}\right ) \log \left ( \frac{p\left ( x_{1} \right )}{q\left ( x_{1} \right )} \right ) + p\left ( x_{2}\right ) \log \left ( \frac{p\left ( x_{2} \right )}{q\left ( x_{2} \right )} \right ) + p\left ( x_{3}\right ) \log \left ( \frac{p\left ( x_{3} \right )}{q\left ( x_{3} \right )} \right ) \\ = 1 * \log \left ( \frac{1}{0.7} \right ) = 0.36 D

上一篇: 揭秘交叉熵损失函数的运作原理,让你轻松理解

下一篇: 深入理解交叉熵损失函数的原理