欢迎您访问 最编程 本站为您分享编程语言代码,编程技术文章!
您现在的位置是: 首页

m 通过 Matlab 比较 PID 控制器、自适应 PID 控制器和 H 无穷大控制器的控制性能

最编程 2024-04-02 15:23:55
...

1.算法仿真效果

matlab2022a仿真结果如下:


2.算法涉及理论知识概要

PID控制器


PID控制器(比例-积分-微分控制器),由比例单元 P、积分单元 I 和微分单元 D 组成。通过Kp, Ki和Kd三个参数的设定。PID控制器主要适用于基本线性和动态特性不随时间变化的系统。



PID 控制器的方块图PID 控制器是一个在工业控制应用中常见的反馈回路部件。这个控制器把收集到的数据和一个参考值进行比较,然后把这个差别用于计算新的输入值,这个新的输入值的目的是可以让系统的数据达到或者保持在参考值。和其他简单的控制运算不同,PID控制器可以根据历史数据和差别的出现率来调整输入值,这样可以使系统更加准确,更加稳定。可以通过数学的方法证明,在其他控制方法导致系统有稳定误差或过程反复的情况下,一个PID反馈回路却可以保持系统的稳定。


具有比例-积分-微分控制规律的控制器,称PID控制器。这种组合具有三种基本规律各自的特点,其运动方程为:



由此可见,当利用PID控制器进行串联校正时,除可使系统的型别提高一级外,还将提供两个负实零点。与PI控制器相比,PID控制器除了同样具有提高系统的稳态性能的优点外,还多提供一个负实零点,从而在提高系统动态性能方面,具有更大的优越性。因此,在工业过程控制系统中,广泛使用PID控制器。PID控制器各部分参数的选择,在系统现场调试中最后确定。通常,应使积分部分发生在系统频率特性的低频段,以提高系统的稳态性能;而使微分部分发生在系统频率特性的中频段,以改善系统的动态性能。


H无穷控制器


H∞控制是一种具有很好鲁棒性的设计方法,具有设计思想明确、控制效果好等优点,尤其适用于模型摄动的多输入多输出(MIMO)系统。H∞控制在控制理论、设计方法及应用等方面,经过多年不断发展和完善,已成为一种具有较完整体系的鲁棒控制理论。为适应控制系统稳定性、自适应性、智能化及工程化的更高要求,基于线性矩阵不等式(LMI)的H∞控制、非线性H∞控制以及H∞控制与神经网络和模糊控制结合,成为近年来H∞控制研究的热点。随着H∞控制研究的深入,其存在的诸如理论复杂、计算量大和参数摄动范围有限等问题将会逐步得到解决,适用范围也会更广、应用前景会更好。


关于H无穷控制器的设计,主要需要根据具体的控制对象进行设计,这里,提供一个网站,是结合matlab进行介绍说明的,感觉还不错:


http://wenku.baidu.com/view/9b5a2218c281e53a5802ff14.html






3.MATLAB核心程序

function edit3_Callback(hObject, eventdata, handles)

% hObject    handle to edit3 (see GCBO)

% eventdata  reserved - to be defined in a future version of MATLAB

% handles    structure with handles and user data (see GUIDATA)


% Hints: get(hObject,'String') returns contents of edit3 as text

%        str2double(get(hObject,'String')) returns contents of edit3 as a double



% --- Executes during object creation, after setting all properties.

function edit3_CreateFcn(hObject, eventdata, handles)

% hObject    handle to edit3 (see GCBO)

% eventdata  reserved - to be defined in a future version of MATLAB

% handles    empty - handles not created until after all CreateFcns called


% Hint: edit controls usually have a white background on Windows.

%       See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end



% --- Executes on button press in pushbutton1.

function pushbutton1_Callback(hObject, eventdata, handles)

% hObject    handle to pushbutton1 (see GCBO)

% eventdata  reserved - to be defined in a future version of MATLAB

% handles    structure with handles and user data (see GUIDATA)


SEL  = get(handles.checkbox1,'Value');

kps  = str2num(get(handles.edit1,'String'));

kis  = str2num(get(handles.edit2,'String'));

kds  = str2num(get(handles.edit3,'String'));

Time = str2num(get(handles.edit5,'String'));


ts        = 0.001;

J         = 0.05;

q         = 0.1;

sys       = tf(1,[J,q,0]);

dsys      = c2d(sys,ts,'z');

[num,den] = tfdata(dsys,'v');


u_1       = 0;

u_2       = 0;

y_1       = 0;

y_2       = 0;

error_1   = 0;

ei        = 0;

kp        = zeros(Time/ts,1);

ki        = zeros(Time/ts,1);

kd        = zeros(Time/ts,1);


for k=1:1:Time/ts

time(k)   =  k*ts;

yd(k)     =  1;

y(k)      = -den(2)*y_1-den(3)*y_2+num(2)*u_1+num(3)*u_2;

error(k)  =  yd(k)-y(k);  

derror(k) = (error(k)-error_1)/ts;


%kp

P_c1     = kps;

tmpsp(k) = P_c1 + sech(error(k));   

if SEL == 0

kp(k)= kps;

end

if SEL == 1

kp(k)= tmpsp(k);

end



%kd

P_d1     = kis;

tmpsd(k) = P_d1 + sech(error(k));   

if SEL == 0

kd(k)= kis;

end

if SEL == 1

kd(k)= tmpsd(k);

end



%ki

P_i1   = kds;

tmpsi(k) = P_i1 + sech(error(k));    

if SEL == 0

ki(k)= kds;

end

if SEL == 1

ki(k)= tmpsi(k);

end


ei        = ei+error(k)*ts;

u(k)      = kp(k)*error(k)+kd(k)*derror(k)+ki(k)*ei;


%延迟,参数更新

u_2       = u_1;

u_1       = u(k);

y_2       = y_1;

y_1       = y(k);

error_1   = error(k);

end



if SEL == 0

save pidr1.mat time yd y  

end

if SEL == 1

save pidr2.mat time yd y   

end


axes(handles.axes1);

plot(time,kp,'r');

xlabel('time(s)');

ylabel('kp');

axes(handles.axes3);

plot(time,kd,'r');

xlabel('time(s)');

ylabel('kd');

axes(handles.axes4);

plot(time,ki,'r');

xlabel('time(s)');

ylabel('ki');


axes(handles.axes2);

cla reset

plot(time,yd,'r',time,y,'k:','linewidth',2);

xlabel('time(s)');

ylabel('Position signal');

legend('Ideal position signal','Position tracking');


t1 = (max(y)-mean(yd))/mean(yd);

msgbox(['Over adjust: ',num2str(100*t1),'%','  Kp,Ki,Kd is:  ',num2str(kp(end)),'; ',num2str(ki(end)),'; ',num2str(kd(end))]);



% --- Executes on button press in pushbutton2.

function pushbutton2_Callback(hObject, eventdata, handles)

% hObject    handle to pushbutton2 (see GCBO)

% eventdata  reserved - to be defined in a future version of MATLAB

% handles    structure with handles and user data (see GUIDATA)

axes(handles.axes2);

cla reset

load pidr1.mat

plot(time,y,'r:');

xlabel('time(s)');

ylabel('Position signal');

hold on

load pidr2.mat

plot(time,y,'b:');

xlabel('time(s)');

ylabel('Position signal');

legend('initial kpkikd','adpative kpkikd');



function edit5_Callback(hObject, eventdata, handles)

% hObject    handle to edit5 (see GCBO)

% eventdata  reserved - to be defined in a future version of MATLAB

% handles    structure with handles and user data (see GUIDATA)


% Hints: get(hObject,'String') returns contents of edit5 as text

%        str2double(get(hObject,'String')) returns contents of edit5 as a double



% --- Executes during object creation, after setting all properties.

function edit5_CreateFcn(hObject, eventdata, handles)

% hObject    handle to edit5 (see GCBO)

% eventdata  reserved - to be defined in a future version of MATLAB

% handles    empty - handles not created until after all CreateFcns called


% Hint: edit controls usually have a white background on Windows.

%       See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');

end