欢迎您访问 最编程 本站为您分享编程语言代码,编程技术文章!
您现在的位置是: 首页

分析 dToF 和 iToF 成像技术

最编程 2024-04-13 10:13:33
...

点击上方“小白学视觉”,选择“星标”公众号

重磅干货,第一时间送达
本文转载自:新机器视觉

苹果公司近期正式推出了新款iPad Pro,吸引了不少人的关注。在官方的宣传标语中,有一句话尤其引人关注, “它的Pro级摄像头打通了真实和虚拟的交界”。


新款iPad Pro搭载的Pro级摄像头不仅包含了全新的超广角摄像头,还包含了一款激光雷达扫描仪。该扫描仪利用dToF技术,结合运动传感器和iPadOS内的架构,可以进行深度测量,为增强现实及更广泛的领域开启无尽可能。


那么dToF是什么呢,它和我们之前市面上已有的iToF又有什么不同呢?

本文将会介绍dToF和iToF的成像原理,对比分析dToF和iToF两者的差异性,带领大家了解一下ToF领域。



 一、ToF是什么?


首先,让我们先来了解一下ToF的基本概念。

Time-of-Flight(ToF),顾名思义,是一种利用光飞行时间的技术。接触过3D视觉的读者应该知道,ToF和结构光、双目立体视觉是近年来三种主流的3D成像方式。ToF向场景中发射近红外光,利用光的飞行时间信息,测量场景中物体的距离。ToF相比较另外两种3D成像方式,深度信息计算量小,抗干扰性强,测量范围远。种种优势推动了ToF在机器人、交互以及其他工业领域中的应用。尤其是在移动端,已有多品牌手机,比如华为、OPPO、苹果,将其用于手机后置摄像。



 二、dToF和iToF 


了解了ToF的概念之后,让我们再来深入了解一下两类ToF的基本成像原理,也就是文章标题中提到的iToF和dToF。

dToF,全称是direct Time-of-Flight。顾名思义,dToF直接测量飞行时间。dToF核心组件包含VCSEL、单光子雪崩二极管SPAD和时间数字转换器TDC。Single Photon Avalanche Diode(SPAD)是一种具有单光子探测能力的光电探测雪崩二极管,只要有微弱的光信号就能产生电流。dToF模组的VCSEL向场景中发射脉冲波,SPAD接收从目标物体反射回来的脉冲波。Time Digital Converter(TDC)能够记录每次接收到的光信号的飞行时间,也就是发射脉冲和接收脉冲之间的时间间隔。dToF会在单帧测量时间内发射和接收N次光信号,然后对记录的N次飞行时间做直方图统计,其中出现频率最高的飞行时间t用来计算待测物体的深度,   。图1是dToF单个像素点记录的光飞行时间直方图,其中,高度最高的柱对应的时间就是该像素点的最终光飞行时间。



图1. 单像素记录的光飞行时间直方图示意图



dToF的原理看起来虽然很简单,但是实际能达到较高的精度很困难。除了对时钟同步有非常高的精度要求以外,还对脉冲信号的精度有很高的要求。普通的光电二极管难以满足这样的需求。而dToF中的核心组件SPAD由于制作工艺复杂,能胜任生产任务的厂家并不多,并且集成困难。所以目前研究dToF的厂家并不多,更多的是在研究和推动iToF。


iToF的概念和dToF相对应,全称是indirect Time-of-Flight,直译就是间接光飞行时间。所谓间接,就是指iToF是通过测量相位偏移来间接测量光的飞行时间,而不是直接测量光飞行时间。


iToF向场景中发射调制后的红外光信号,再由传感器接收场景中待测物体反射回来的光信号,根据曝光(积分)时间内的累计电荷计算发射信号和接收信号之间的相位差,从而获取目标物体的深度。如图2所示。

图2. iToF成像原理示意图[1]


iToF模组的核心组件包含VCSEL和图像传感器。VCSEL发射特定频率的调制红外光。图像传感器在曝光(积分)时间内接收反射光并进行光电转换。曝光(积分)结束后将数据读出,经过一个模拟数字转换器再传给计算单元,最终由计算单元计算每个像素的相位偏移。iToF计算深度的方式通常是采用4-sampling-bucket算法,利用4个相位延迟为0°,90°,180°和270°的采样信号计算深度。如图3所示


图3. 连续波调制方式测相位偏移原理示意图[2]


根据上述原理图,可以得到相位偏移的计算公式,   。然后,再根据相位偏移计算深度,   。其中,   是调制信号的频率,   是光速。



 三、性能对比 


dToF和iToF虽然都是利用光飞行时间技术,但是两者在测距原理和硬件实现上都有差异。软硬件的差异会导致这两类ToF在各方面的性能表现上各有千秋。

衡量ToF的性能指标,需要考虑几个方面。因为ToF是一个可以测距的相机,作为一个测距设备,基本的评价指标有测距精度和有效探测距离。其次,作为相机而言,图像分辨率也是一个重要的评价指标。此外,由于ToF本身只能提供3D信息,它将来更多的发展是集成到3D相关的应用,比如3D建模、AR以及移动平台。在集成到其他3D相关的应用时,尤其是移动端和机器人平台,必须要考虑它的能耗和成本,以及在各种复杂场景下的抗干扰能力。以上的这些特性,决定了dToF和iToF有着各自适用的应用场景。

接下来,本文会从精度、有效探测距离、图像分辨率、能耗、成本、抗干扰等7个方面,对比iToF和dToF的优劣。


  • 精度


精度指真实深度值和相机的测量值之间的差,是衡量一个测量设备的基本指标。

对于dToF,由于它采用单光子雪崩二极管(SPAD),能够在很短的时间间隔内测量吸收的光子数,最小能够在   级的时间内产生响应电流。TDC的时间分辨率也高于 

上一篇: Go-逃逸分析

下一篇: ESP32 AT 命令集用于发现 BLE 设备名称并与手机进行数据直通

推荐阅读