欢迎您访问 最编程 本站为您分享编程语言代码,编程技术文章!
您现在的位置是: 首页

计算方法 - 第 2 章 插值法 - 问题解决

最编程 2024-04-23 08:50:36
...

构造《函数-均差表》:

\(x\) \(f(x)\) 一阶均差
\(x_0\) \(f(x_0)\)
\(x_1\) \(f(x_1)\) \(f[x_0,x_1]\)

然后构造函数:

\[P_3(x)=f(x_0)+f[x_0,x_1]\cdot(x-x_0)+A\times(x-x_0)(x-x_1)+B\times(x-x_0)^2(x-x_1) \]

\[P_3^{(1)}(x)=f[x_0,x_1]+A\times[2x-(x_0+x_1)]+B\times[(x-x_0)^2+2(x-x_0)(x-x_1)] \]

\[P_3^{(2)}(x)=2A+B\times[2(x-x_0)+2\cdot[2x-(x_0+x_1)]] \]

\(P_3^{(1)}(x_0)=f^{(1)}(x_0)\)\(P_3^{(2)}(x_0)=f^{(2)}(x_0)\)分别代入可得:

\[P_3^{(1)}(x_0)=1+A\times(x_0-x_1)=f^{(1)}(x_0) \]

\[P_3^{(2)}(x_0)=2A+B\times[2\cdot(x_0-x_1)]=f^{(2)}(x_0) \]

解得:

\[A=\frac{f^{(1)}(x_0)-f[x_0,x_1]}{x_0-x_1},\qquad B=\frac{f^{(2)}(x_0)\times(x_0-x_1)-2[f^{(1)}(x_0)-f[x_0,x_1]]}{2(x_0-x_1)^2} \]

代入函数,可得:

\[\begin{aligned}P_3(x)&=f(x_0)+f[x_0,x_1]\cdot(x-x_0)\\\\&+\frac{f^{(1)}(x_0)-f[x_0,x_1]}{x_0-x_1}\times(x-x_0)(x-x_1)\\\\&+\frac{f^{(2)}(x_0)\times(x_0-x_1)-2[f^{(1)}(x_0)-f[x_0,x_1]]}{2(x_0-x_1)^2}\times(x-x_0)^2(x-x_1)\end{aligned} \]

不妨整理一下(将\(x-x_1\Longrightarrow x-x_0+x_0-x_1\)),易得(放????,难得一批):

\[P_3(x)=f(x_0)+f^{'}(x_0)\times(x-x_0)+\frac{1}{2}f^{''}(x_0)\times(x-x_0)^2+[\frac{f[x_0,x_1]-f^{'}(x_0)}{x_1-x_0}-\frac{1}{2}f^{''}(x_0)]\times\frac{(x-x_0)^3}{x_1-x_0} \]

至此证毕,所以……大家知道为啥我愿称之为“暴力硬核待定系数法”了嘛?我去梳梳头皮了先生活苦涩