欢迎您访问 最编程 本站为您分享编程语言代码,编程技术文章!
您现在的位置是: 首页

机器学习实战17--高斯帕克贝叶斯(GaussianNB)模型的实际应用,结合生活中的生动实例帮助你理解--四.高斯帕克贝叶斯模型的数学原理

最编程 2024-07-02 11:45:51
...

在机器学习中,Gaussian Naive Bayes (GaussianNB) 模型是一种基于贝叶斯定理和高斯分布的概率分类器。其核心思想是假设特征之间相互独立,并且每个特征都服从高斯分布(正态分布)。以下是GaussianNB模型的数学原理:

对于给定的数据集 D = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x N , y N ) } D = \{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\} D={(x1,y1),(x2,y2),...,(xN,yN)},其中 x i ∈ R d x_i \in \mathbb{R}^d xiRd 是一个d维特征向量, y i ∈ { C 1 , C 2 , . . . , C k } y_i \in \{C_1, C_2, ..., C_k\} yi{C1,C2,...,Ck} 是对应的类别标签。

对于每一个类别 C j C_j Cj,GaussianNB模型假设每个特征 x i j x_{ij} xij 都独立地服从高斯分布:

p ( x i j ∣ y = C j ) = 1 2 π σ j 2 exp ⁡ ( − ( x i j − μ j ) 2 2 σ j 2 ) p(x_{ij}|y=C_j) = \frac{1}{\sqrt{2\pi\sigma_{j}^2}} \exp\left(-\frac{(x_{ij} - \mu_{j})^2}{2\sigma_{j}^2}\right) p(xijy=Cj)=2πσj2 1exp(2σj2(xijμj)2)

其中, μ j \mu_j μj 是类别 C j C_j Cj 对应的第i个特征的均值, σ j 2 \sigma_j^2 σj2 是类别 C j C_j Cj 对应的第i个特征的方差。

在预测阶段,利用贝叶斯定理计算后验概率:

P ( y = C j ∣ x ) = P ( y = C j ) ∏ i = 1 d P ( x i ∣ y = C j ) ∑ l = 1 k P ( y = C l ) ∏ i = 1 d P ( x i ∣ y = C l ) P(y=C_j|x) = \frac{P(y=C_j) \prod_{i=1}^{d} P(x_i|y=C_j)}{\sum_{l=1}^{k} P(y=C_l) \prod_{i=1}^{d} P(x_i|y=C_l)} P(y=Cjx)=l=1kP(y=Cl)i=1dP(xiy=Cl)P(y=Cj)i=1dP(xiy=Cj)

其中, P ( y = C j ) P(y=C_j) P(y=Cj) 是先验概率,可以通过训练数据集中各类别的频率估计得到。 模型将预测使得后验概率最大的类别作为新的观测样本的类别。