欢迎您访问 最编程 本站为您分享编程语言代码,编程技术文章!
您现在的位置是: 首页

用PyTorch一步步详解与实现DDPG强化学习算法代码

最编程 2024-07-29 15:03:34
...
来源:Deephub Imba本文约4300字,建议阅读10分钟本文将使用pytorch对其进行完整的实现和讲解。

深度确定性策略梯度(Deep Deterministic Policy Gradient, DDPG)是受Deep Q-Network启发的无模型、非策略深度强化算法,是基于使用策略梯度的Actor-Critic,本文将使用pytorch对其进行完整的实现和讲解。

DDPG的关键组成部分是

  • Replay Buffer
  • Actor-Critic neural network
  • Exploration Noise
  • Target network
  • Soft Target Updates for Target Network

下面我们一个一个来逐步实现:

Replay Buffer

DDPG使用Replay Buffer存储通过探索环境采样的过程和奖励(Sₜ,aₜ,Rₜ,Sₜ+₁)。Replay Buffer在帮助代理加速学习以及DDPG的稳定性方面起着至关重要的作用:

  • 最小化样本之间的相关性:将过去的经验存储在 Replay Buffer 中,从而允许代理从各种经验中学习。
  • 启用离线策略学习:允许代理从重播缓冲区采样转换,而不是从当前策略采样转换。
  • 高效采样:将过去的经验存储在缓冲区中,允许代理多次从不同的经验中学习。
 class Replay_buffer():     '''    Code based on:    https://github.com/openai/baselines/blob/master/baselines/deepq/replay_buffer.py    Expects tuples of (state, next_state, action, reward, done)    '''     def __init__(self, max_size=capacity):         """Create Replay buffer.        Parameters        ----------        size: int            Max number of transitions to store in the buffer. When the buffer            overflows the old memories are dropped.        """         self.storage = []         self.max_size = max_size         self.ptr = 0
     def push(self, data):         if len(self.storage) == self.max_size:             self.storage[int(self.ptr)] = data             self.ptr = (self.ptr + 1) % self.max_size         else:             self.storage.append(data)
     def sample(self, batch_size):         """Sample a batch of experiences.        Parameters        ----------        batch_size: int            How many transitions to sample.        Returns        -------        state: np.array            batch of state or observations        action: np.array            batch of actions executed given a state        reward: np.array            rewards received as results of executing action        next_state: np.array            next state next state or observations seen after executing action        done: np.array            done[i] = 1 if executing ation[i] resulted in            the end of an episode and 0 otherwise.        """         ind = np.random.randint(0, len(self.storage), size=batch_size)         state, next_state, action, reward, done = [], [], [], [], []
         for i in ind:             st, n_st, act, rew, dn = self.storage[i]             state.append(np.array(st, copy=False))             next_state.append(np.array(n_st, copy=False))             action.append(np.array(act, copy=False))             reward.append(np.array(rew, copy=False))             done.append(np.array(dn, copy=False))
         return np.array(state), np.array(next_state), np.array(action), np.array(reward).reshape(-1, 1), np.array(done).reshape(-1, 1)

Actor-Critic Neural Network

这是Actor-Critic 强化学习算法的 PyTorch 实现。该代码定义了两个神经网络模型,一个 Actor 和一个 Critic。

Actor 模型的输入:环境状态;Actor 模型的输出:具有连续值的动作。

Critic 模型的输入:环境状态和动作;Critic 模型的输出:Q 值,即当前状态-动作对的预期总奖励。

 class Actor(nn.Module):     """    The Actor model takes in a state observation as input and    outputs an action, which is a continuous value.
    It consists of four fully connected linear layers with ReLU activation functions and    a final output layer selects one single optimized action for the state    """     def __init__(self, n_states, action_dim, hidden1):         super(Actor, self).__init__()         self.net = nn.Sequential(             nn.Linear(n_states, hidden1),             nn.ReLU(),             nn.Linear(hidden1, hidden1),             nn.ReLU(),             nn.Linear(hidden1, hidden1),             nn.ReLU(),             nn.Linear(hidden1, 1)        )
     def forward(self, state):         return self.net(state)
 class Critic(nn.Module):     """    The Critic model takes in both a state observation and an action as input and    outputs a Q-value, which estimates the expected total reward for the current state-action pair.
    It consists of four linear layers with ReLU activation functions,    State and action inputs are concatenated before being fed into the first linear layer.
    The output layer has a single output, representing the Q-value    """     def __init__(self, n_states, action_dim, hidden2):         super(Critic, self).__init__()         self.net = nn.Sequential(             nn.Linear(n_states + action_dim, hidden2),             nn.ReLU(),             nn.Linear(hidden2, hidden2),             nn.ReLU(),             nn.Linear(hidden2, hidden2),             nn.ReLU(),             nn.Linear(hidden2, action_dim)        )
     def forward(self, state, action):         return self.net(torch.cat((state, action), 1))

Exploration Noise

向 Actor 选择的动作添加噪声是 DDPG 中用来鼓励探索和改进学习过程的一种技术。

可以使用高斯噪声或 Ornstein-Uhlenbeck 噪声。 高斯噪声简单且易于实现,Ornstein-Uhlenbeck 噪声会生成时间相关的噪声,可以帮助代理更有效地探索动作空间。但是与高斯噪声方法相比,Ornstein-Uhlenbeck 噪声波动更平滑且随机性更低。

 import numpy as np import random import copy
 class OU_Noise(object):     """Ornstein-Uhlenbeck process.    code from :    https://math.stackexchange.com/questions/1287634/implementing-ornstein-uhlenbeck-in-matlab    The OU_Noise class has four attributes
        size: the size of the noise vector to be generated        mu: the mean of the noise, set to 0 by default        theta: the rate of mean reversion, controlling how quickly the noise returns to the mean        sigma: the volatility of the noise, controlling the magnitude of fluctuations    """     def __init__(self, size, seed, mu=0., theta=0.15, sigma=0.2):         self.mu = mu * np.ones(size)         self.theta = theta         self.sigma = sigma         self.seed = random.seed(seed)         self.reset()
     def reset(self):         """Reset the internal state (= noise) to mean (mu)."""         self.state = copy.copy(self.mu)
     def sample(self):         """Update internal state and return it as a noise sample.        This method uses the current state of the noise and generates the next sample        """         dx = self.theta * (self.mu - self.state) + self.sigma * np.array([np.random.normal() for _ in range(len(self.state))])         self.state += dx         return self.state

要在DDPG中使用高斯噪声,可以直接将高斯噪声添加到代理的动作选择过程中。

DDPG

DDPG (Deep Deterministic Policy Gradient)采用两组Actor-Critic神经网络进行函数逼近。在DDPG中,目标网络是Actor-Critic ,它目标网络具有与Actor-Critic网络相同的结构和参数化。

在训练期时,代理使用其 Actor-Critic 网络与环境交互,并将经验元组(Sₜ、Aₜ、Rₜ、Sₜ+₁)存储在Replay Buffer中。 然后代理从 Replay Buffer 中采样并使用数据更新 Actor-Critic 网络。 DDPG 算法不是通过直接从 Actor-Critic 网络复制来更新目标网络权重,而是通过称为软目标更新的过程缓慢更新目标网络权重。

软目标的更新是从Actor-Critic网络传输到目标网络的称为目标更新率(τ)的权重的一小部分。

软目标的更新公式如下:

通过使用软目标技术,可以大大提高学习的稳定性。

 #Set Hyperparameters # Hyperparameters adapted for performance from capacity=1000000 batch_size=64 update_iteration=200 tau=0.001 # tau for soft updating gamma=0.99 # discount factor directory = './' hidden1=20 # hidden layer for actor hidden2=64. #hiiden laye for critic
 class DDPG(object):     def __init__(self, state_dim, action_dim):         """        Initializes the DDPG agent.        Takes three arguments:                state_dim which is the dimensionality of the state space,                action_dim which is the dimensionality of the action space, and                max_action which is the maximum value an action can take.
        Creates a replay buffer, an actor-critic networks and their corresponding target networks.        It also initializes the optimizer for both actor and critic networks alog with        counters to track the number of training iterations.        """         self.replay_buffer = Replay_buffer()
         self.actor = Actor(state_dim, action_dim, hidden1).to(device)         self.actor_target = Actor(state_dim, action_dim,  hidden1).to(device)         self.actor_target.load_state_dict(self.actor.state_dict())         self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=3e-3)
         self.critic = Critic(state_dim, action_dim,  hidden2).to(device)         self.critic_target = Critic(state_dim, action_dim,  hidden2).to(device)         self.critic_target.load_state_dict(self.critic.state_dict())         self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=2e-2)         # learning rate


         self.num_critic_update_iteration = 0         self.num_actor_update_iteration = 0         self.num_training = 0
     def select_action(self, state):         """        takes the current state as input and returns an action to take in that state.        It uses the actor network to map the state to an action.        """         state = torch.FloatTensor(state.reshape(1, -1)).to(device)         return self.actor(state).cpu().data.numpy().flatten()

     def update(self):         """        updates the actor and critic networks using a batch of samples from the replay buffer.        For each sample in the batch, it computes the target Q value using the target critic network and the target actor network.        It then computes the current Q value        using the critic network and the action taken by the actor network.
        It computes the critic loss as the mean squared error between the target Q value and the current Q value, and        updates the critic network using gradient descent.
        It then computes the actor loss as the negative mean Q value using the critic network and the actor network, and        updates the actor network using gradient ascent.
        Finally, it updates the target networks using        soft updates, where a small fraction of the actor and critic network weights are transferred to their target counterparts.        This process is repeated for a fixed number of iterations.        """
         for it in range(update_iteration):             # For each Sample in replay buffer batch             state, next_state, action, reward, done = self.replay_buffer.sample(batch_size)             state = torch.FloatTensor(state).to(device)             action = torch.FloatTensor(action).to(device)             next_state = torch.FloatTensor(next_state).to(device)             done = torch.FloatTensor(1-done).to(device)             reward = torch.FloatTensor(reward).to(device)
             # Compute the target Q value             target_Q = self.critic_target(next_state, self.actor_target(next_state))             target_Q = reward + (done * gamma * target_Q).detach()
             # Get current Q estimate             current_Q = self.critic(state, action)
             # Compute critic loss             critic_loss = F.mse_loss(current_Q, target_Q)
             # Optimize the critic             self.critic_optimizer.zero_grad()             critic_loss.backward()             self.critic_optimizer.step()
             # Compute actor loss as the negative mean Q value using the critic network and the actor network             actor_loss = -self.critic(state, self.actor(state)).mean()
             # Optimize the actor             self.actor_optimizer.zero_grad()             actor_loss.backward()             self.actor_optimizer.step()

             """            Update the frozen target models using            soft updates, where            tau,a small fraction of the actor and critic network weights are transferred to their target counterparts.            """             for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()):                 target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data)
             for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()):                 target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data)

             self.num_actor_update_iteration += 1             self.num_critic_update_iteration += 1     def save(self):         """        Saves the state dictionaries of the actor and critic networks to files        """         torch.save(self.actor.state_dict(), directory + 'actor.pth')         torch.save(self.critic.state_dict(), directory + 'critic.pth')
     def load(self):         """        Loads the state dictionaries of the actor and critic networks to files        """         self.actor.load_state_dict(torch.load(directory + 'actor.pth'))         self.critic.load_state_dict(torch.load(directory + 'critic.pth'))

训练DDPG

这里我们使用 OpenAI Gym 的“MountainCarContinuous-v0”来训练我们的DDPG RL 模型,这里的环境提供连续的行动和观察空间,目标是尽快让小车到达山顶。

下面定义算法的各种参数,例如最大训练次数、探索噪声和记录间隔等等。 使用固定的随机种子可以使得过程能够回溯。

 import gym
 # create the environment env_name='MountainCarContinuous-v0' env = gym.make(env_name) device = 'cuda' if torch.cuda.is_available() else 'cpu'
 # Define different parameters for training the agent max_episode=100 max_time_steps=5000 ep_r = 0 total_step = 0 score_hist=[] # for rensering the environmnet render=True render_interval=10 # for reproducibility env.seed(0) torch.manual_seed(0) np.random.seed(0) #Environment action ans states state_dim = env.observation_space.shape[0] action_dim = env.action_space.shape[0] max_action = float(env.action_space.high[0]) min_Val = torch.tensor(1e-7).float().to(device)
 # Exploration Noise exploration_noise=0.1 exploration_noise=0.1 * max_action

创建DDPG代理类的实例,以训练代理达到指定的次数。在每轮结束时调用代理的update()方法来更新参数,并且在每十轮之后使用save()方法将代理的参数保存到一个文件中。

 # Create a DDPG instance agent = DDPG(state_dim, action_dim)
 # Train the agent for max_episodes for i in range(max_episode):     total_reward = 0     step =0     state = env.reset()     for  t in range(max_time_steps):         action = agent.select_action(state)         # Add Gaussian noise to actions for exploration         action = (action + np.random.normal(0, 1, size=action_dim)).clip(-max_action, max_action)         #action += ou_noise.sample()         next_state, reward, done, info = env.step(action)         total_reward += reward         if render and i >= render_interval : env.render()         agent.replay_buffer.push((state, next_state, action, reward, np.float(done)))         state = next_state         if done:             break         step += 1
     score_hist.append(total_reward)     total_step += step+1     print("Episode: \t{} Total Reward: \t{:0.2f}".format( i, total_reward))     agent.update()     if i % 10 == 0:         agent.save() env.close()

测试DDPG

 test_iteration=100
 for i in range(test_iteration):     state = env.reset()     for t in count():         action = agent.select_action(state)         next_state, reward, done, info = env.step(np.float32(action))         ep_r += reward         print(reward)         env.render()         if done:             print("reward{}".format(reward))             print("Episode \t{}, the episode reward is \t{:0.2f}".format(i, ep_r))             ep_r = 0             env.render()             break         state = next_state

我们使用下面的参数让模型收敛:

  • 从标准正态分布中采样噪声,而不是随机采样。
  • 将polyak常数(tau)从0.99更改为0.001
  • 修改Critic 网络的隐藏层大小为[64,64]。在Critic 网络的第二层之后删除了ReLU激活。改成(Linear, ReLU, Linear, Linear)。
  • 最大缓冲区大小更改为1000000
  • 将batch_size的大小从128更改为64

训练了75轮之后的效果如下:

总结

DDPG算法是一种受deep Q-Network (DQN)算法启发的无模型off-policy Actor-Critic算法。它结合了策略梯度方法和Q-learning的优点来学习连续动作空间的确定性策略。

与DQN类似,它使用重播缓冲区存储过去的经验和目标网络,用于训练网络,从而提高了训练过程的稳定性。

DDPG算法需要仔细的超参数调优以获得最佳性能。超参数包括学习率、批大小、目标网络更新速率和探测噪声参数。超参数的微小变化会对算法的性能产生重大影响。

上面的参数来自:

https://ai.stackexchange.com/questions/22945/ddpg-doesnt-converge-for-mountaincarcontinuous-v0-gym-environment

本文的完整代码:

https://github.com/arshren/Reinforcement_Learning/blob/main/DDPG-MountainCar.ipynb

编辑:王菁

校对:林亦霖