欢迎您访问 最编程 本站为您分享编程语言代码,编程技术文章!
您现在的位置是: 首页

1.3 多项式环

最编程 2024-03-02 21:49:38
...
定理1.3.5(辗转相除法) f ( x ) f(x) f(x) g ( x ) g(x) g(x) 是域 F F F上的两个多项式, g ( x ) ≠ 0 g(x)\ne 0 g(x)=0. 记 r 0 ( x ) = f ( x ) r_0(x)=f(x) r0(x)=f(x) r 1 ( x ) = g ( x ) r_1(x)=g(x) r1(x)=g(x),并反复使用定理1.3.2给出的多项式除法,我们有
r 0 ( x ) = q 1 ( x ) r 1 ( x ) + r 2 ( x ) , 0<deg ( r 2 ( x ) ) < deg ⁡ ( r 1 ( x ) ) r 1 ( x ) = q 2 ( x ) r 2 ( x ) + r 3 ( x ) , 0 ⩽ deg ⁡ ( r 3 ( x ) ) < det ⁡ ( r 2 ( x ) ) ⋮ r k − 1 ( x ) = q k ( x ) r k ( x ) + r k + 1 ( x ) , 0 ≤ deg ⁡ ( r k + 1 ) < deg ⁡ ( r k ( x ) ) ⋮ \begin{array}{rcl}r_0(x)=q_1(x)r_1(x)+r_2(x),\quad\text{0<deg}(r_2(x))<\deg(r_1(x))\\ r_1(x)=q_2(x)r_2(x)+r_3(x),\quad0\leqslant\deg(r_3(x))<\det(r_2(x))\\ \vdots\\ r_{k-1}(x)=q_k(x)r_k(x)+r_{k+1}(x),0\leq\deg(r_{k+1})<\deg(r_k(x))\\ \vdots\end{array} r0(x)=q1(x)r1(x)+r2(x),0<deg(r2(x))<deg(r1(x))r1(x)=q2(x)r2(x)+r3(x),0deg(r3(x))<det(r2(x))rk1(x)=qk(x)rk(x)+rk+1(x),0deg(rk+1)<deg(rk(x))上述过程经过有限步后,一定存在 k k k 使得 r k + 1 = 0 r_{k+1}=0 rk+1=0. 这时得到的 r k ( x ) r_k(x) rk(x) 就是多项式 f ( x ) , g ( x ) f(x),g(x) f(x)g(x)的最大公因式,即 r k ( x ) = ( f ( x ) , g ( x ) ) r_k(x)=(f(x),g(x)) rk(x)=(f(x)g(x)).