欢迎您访问 最编程 本站为您分享编程语言代码,编程技术文章!
您现在的位置是: 首页

模型部署教程 (四):在 PyTorch 中支持更多 ONNX 操作符

最编程 2024-03-12 15:14:34
...

OpenMMLab:模型部署入门教程(一):模型部署简介

OpenMMLab:模型部署入门教程(二):解决模型部署中的难题

OpenMMLab:模型部署入门教程(三):PyTorch 转 ONNX 详解

模型部署入门系列教程持续更新啦,在上一篇教程中,我们系统地学习了 PyTorch 转 ONNX 的方法,可以发现 PyTorch 对 ONNX 的支持还不错。但在实际的部署过程中,难免碰到模型无法用原生 PyTorch 算子表示的情况。这个时候,我们就得考虑扩充 PyTorch,即在 PyTorch 中支持更多 ONNX 算子。

而要使 PyTorch 算子顺利转换到 ONNX ,我们需要保证以下三个环节都不出错:

  • 算子在 PyTorch 中有实现
  • 有把该 PyTorch 算子映射成一个或多个 ONNX 算子的方法
  • ONNX 有相应的算子

可在实际部署中,这三部分的内容都可能有所缺失。其中最坏的情况是:我们定义了一个全新的算子,它不仅缺少 PyTorch 实现,还缺少 PyTorch 到 ONNX 的映射关系。但所谓车到山前必有路,对于这三个环节,我们也分别都有以下的添加支持的方法:

  • PyTorch 算子
  • 组合现有算子
  • 添加 TorchScript 算子
  • 添加普通 C++ 拓展算子
  • 映射方法
  • 为 ATen 算子添加符号函数
  • 为 TorchScript 算子添加符号函数
  • 封装成 torch.autograd.Function 并添加符号函数
  • ONNX 算子
  • 使用现有 ONNX 算子
  • 定义新 ONNX 算子

那么面对不同的情况时,就需要我们灵活地选用和组合这些方法。听起来是不是很复杂?别担心,本篇文章中,我们将围绕着三种算子映射方法,学习三个添加算子支持的实例,来理清如何合适地为 PyTorch 算子转 ONNX 算子的三个环节添加支持。

支持 ATen 算子

实际的部署过程中,我们都有可能会碰到一个最简单的算子缺失问题: 算子在 ATen 中已经实现了,ONNX 中也有相关算子的定义,但是相关算子映射成 ONNX 的规则没有写。在这种情况下,我们只需要为 ATen 算子补充描述映射规则的符号函数就行了。

ATen 是 PyTorch 内置的 C++ 张量计算库,PyTorch 算子在底层绝大多数计算都是用 ATen 实现的。

上期习题中,我们曾经提到了 ONNX 的 Asinh 算子。这个算子在 ATen 中有实现,却缺少了映射到 ONNX 算子的符号函数。在这里,我们来尝试为它补充符号函数,并导出一个包含这个算子的 ONNX 模型。

获取 ATen 中算子接口定义

为了编写符号函数,我们需要获得 asinh 推理接口的输入参数定义。这时,我们要去 torch/_C/_VariableFunctions.pyitorch/nn/functional.pyi 这两个文件中搜索我们刚刚得到的这个算子名。这两个文件是编译 PyTorch 时本地自动生成的文件,里面包含了 ATen 算子的 PyTorch 调用接口。通过搜索,我们可以知道 asinh 在文件 torch/_C/_VariableFunctions.pyi 中,其接口定义为:

def asinh(input: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...

经过这些步骤,我们确认了缺失的算子名为 asinh,它是一个有实现的 ATen 算子。我们还记下了 asinh 的调用接口。接下来,我们要为它补充符号函数,使它在转换成 ONNX 模型时不再报错。

添加符号函数

到目前为止,我们已经多次接触了定义 PyTorch 到 ONNX 映射规则的符号函数了。现在,我们向大家正式介绍一下符号函数。

符号函数,可以看成是 PyTorch 算子类的一个静态方法。在把 PyTorch 模型转换成 ONNX 模型时,各个 PyTorch 算子的符号函数会被依次调用,以完成 PyTorch 算子到 ONNX 算子的转换。符号函数的定义一般如下:

def symbolic(g: torch._C.Graph, input_0: torch._C.Value, input_1: torch._C.Value, ...):

其中,torch._C.Graphtorch._C.Value 都对应 PyTorch 的 C++ 实现里的一些类。我们在这篇文章不深究它们的细节(感兴趣的话可以参考我们的 TorchScript 系列文章中对 trace 机制的解读),只需要知道第一个参数就固定叫 g,它表示和计算图相关的内容;后面的每个参数都表示算子的输入,需要和算子的前向推理接口的输入相同。对于 ATen 算子来说,它们的前向推理接口就是上述两个 .pyi 文件里的函数接口。

g 有一个方法 op。在把 PyTorch 算子转换成 ONNX 算子时,需要在符号函数中调用此方法来为最终的计算图添加一个 ONNX 算子。其定义如下:

def op(name: str, input_0: torch._C.Value, input_1: torch._C.Value, ...)

其中,第一个参数是算子名称。如果该算子是普通的 ONNX 算子,只需要把它在 ONNX 官方文档里的名称填进去即可(我们稍后再讲其他情况)。

在最简单的情况下,我们只要把 PyTorch 算子的输入用g.op()一一对应到 ONNX 算子上即可,并把g.op()的返回值作为符号函数的返回值。在情况更复杂时,我们转换一个 PyTorch 算子可能要新建若干个 ONNX 算子。

补充完了背景知识,让我们回到 asinh 算子上,来为它编写符号函数。我们先去翻阅一下 ONNX 算子文档,学习一下我们在符号函数里的映射关系 g.op() 里应该怎么写。Asinh文档写道:该算子有一个输入 input,一个输出 output,二者的类型都为张量。

到这里,我们已经完成了信息收集环节。我们在上一小节得知了 asinh 的推理接口定义,在这一小节里收集了 ONNX 算子 Asinh 的定义。现在,我们可以用代码来补充这二者的映射关系了。在刚刚导出 asinh 算子的代码中,我们添加以下内容:

from torch.onnx.symbolic_registry import register_op 
 
def asinh_symbolic(g, input, *, out=None): 
    return g.op("Asinh", input) 
 
register_op('asinh', asinh_symbolic, '', 9)

这里的asinh_symbolic就是asinh的符号函数。从除g以外的第二个输入参数开始,其输入参数应该严格对应它在 ATen 中的定义:

def asinh(input: Tensor, *, out: Optional[Tensor]=None) -> Tensor: ...

在符号函数的函数体中,g.op("Asinh", input)则完成了 ONNX 算子的定义。其中,第一个参数"Asinh"是算子在 ONNX 中的名称。至于第二个参数 input,如我们刚刚在文档里所见,这个算子只有一个输入,因此我们只要把符号函数的输入参数 input 对应过去就行。ONNX 的 Asinh 的输出和 ATen 的 asinh 的输出是一致的,因此我们直接把 g.op() 的结果返回即可。

定义完符号函数后,我们要把这个符号函数和原来的 ATen 算子“绑定”起来。这里,我们要用到 register_op 这个 PyTorch API 来完成绑定。如示例所示,只需要一行简单的代码即可把符号函数 asinh_symbolic 绑定到算子 asinh 上:

register_op('asinh', asinh_symbolic, '', 9)

register_op的第一个参数是目标 ATen 算子名,第二个是要注册的符号函数,这两个参数很好理解。第三个参数是算子的“域”,对于普通 ONNX 算子,直接填空字符串即可。第四个参数表示向哪个算子集版本注册。我们遵照 ONNX 标准,向第 9 号算子集注册。值得注意的是,这里向第 9 号算子集注册,不代表较新的算子集(第 10 号、第 11 号……)都得到了注册。在示例中,我们先只向第 9 号算子集注册。

整理一下,我们最终的代码如下:

import torch 
 
class Model(torch.nn.Module): 
    def __init__(self): 
        super().__init__() 
 
    def forward(self, x): 
        return torch.asinh(x) 
 
from torch.onnx.symbolic_registry import register_op 
 
def asinh_symbolic(g, input, *, out=None): 
    return g.op("Asinh", input) 
 
register_op('asinh', asinh_symbolic, '', 9) 
 
model = Model() 
input = torch.rand(1, 3, 10, 10) 
torch.onnx.export(model, input, 'asinh.onnx')

成功导出的话,asinh.onnx 应该长这个样子:

测试算子

在完成了一份自定义算子后,我们一定要测试一下算子的正确性。一般我们要用 PyTorch 运行一遍原算子,再用推理引擎(比如 ONNX Runtime)运行一下 ONNX 算子,最后比对两次的运行结果。对于我们刚刚得到的 asinh.onnx,可以用如下代码来验证:

import onnxruntime 
import torch 
import numpy as np 
 
class Model(torch.nn.Module): 
    def __init__(self): 
        super().__init__() 
 
    def forward(self, x): 
        return torch.asinh(x) 
 
model = Model() 
input = torch.rand(1, 3, 10, 10) 
torch_output = model(input).detach().numpy() 
 
sess = onnxruntime.InferenceSession('asinh.onnx') 
ort_output = sess.run(None, {'0': input.numpy()})[0] 
 
assert np.allclose(torch_output, ort_output)

在这份代码里,我们用 PyTorch 做了一遍推理,并把结果转成了 numpy 格式。之后,我们又用 ONNX Runtime 对 onnx 文件做了一次推理。

忘了 ONNX Runtime 的调用方法的话,欢迎回顾第一篇教程~

最后,我们使用 np.allclose 来保证两个结果张量的误差在一个可以允许的范围内。一切正常的话,运行这段代码后,assert 所在行不会报错,程序应该没有任何输出。

支持 TorchScript 算子

对于一些比较复杂的运算,仅使用 PyTorch 原生算子是无法实现的。这个时候,就要考虑自定义一个 PyTorch 算子,再把它转换到 ONNX 中了。新增 PyTorch 算子的方法有很多,PyTorch 官方比较推荐的一种做法是添加 TorchScript 算子

由于添加算子的方法较繁琐,我们今天跳过新增 TorchScript 算子的内容,以可变形卷积(Deformable Convolution)算子为例,介绍为现有 TorchScript 算子添加 ONNX 支持的方法。

可变形卷积(Deformable Convolution)是在 Torchvision 中实现的 TorchScript 算子,虽然尚未得到广泛支持,但是出现在许多模型中。

有了支持 ATen 算子的经验之后,我们可以知道为算子添加符号函数一般要经过以下几步:

  1. 获取原算子的前向推理接口。
  2. 获取目标 ONNX 算子的定义。
  3. 编写符号函数并绑定。

在为可变形卷积添加符号函数时,我们也可以尝试走一遍这个流程。

使用 TorchScript 算子

和之前一样,我们首先定义一个包含了算子的模型,为之后转换 ONNX 模型做准备。

import torch 
import torchvision 
 
class Model(torch.nn.Module): 
    def __init__(self): 
        super().__init__() 
        self.conv1 = torch.nn.Conv2d(3, 18, 3) 
        self.conv2 = torchvision.ops.DeformConv2d(3, 3, 3) 
 
    def forward(self, x): 
        return self.conv2(x, self.conv1(x))

其中,torchvision.ops.DeformConv2d 就是 Torchvision 中的可变形卷积层。相比于普通卷积,可变形卷积的其他参数都大致相同,唯一的区别就是在推理时需要多输入一个表示偏移量的张量。

然后,我们查询算子的前向推理接口。DeformConv2d 层最终会调用 deform_conv2d 这个算子。我们可以在 torchvision/csrc/ops/deform_conv2d.cpp 中查到该算子的调用接口:

m.def(TORCH_SELECTIVE_SCHEMA( 
      "torchvision::deform_conv2d(Tensor input,  
      Tensor weight,  
      Tensor offset,  
      ...... 
      bool use_mask) -> Tensor"));

那么接下来,根据之前的经验,我们就是要去 ONNX 官方文档中查找算子的定义了。

自定义 ONNX 算子

很遗憾的是,如果我们去 ONNX 的官方算子页面搜索 "deform",将搜不出任何内容。目前,ONNX 还没有提供可变形卷积的算子,我们要自己定义一个 ONNX 算子了。

我们在前面讲过,g.op() 是用来定义 ONNX 算子的函数。对于 ONNX 官方定义的算子,g.op() 的第一个参数就是该算子的名称。而对于一个自定义算子,g.op() 的第一个参数是一个带命名空间的算子名,比如:

g.op("custom::deform_conv2d, ...)

其中,"::"前面的内容就是我们的命名空间。该概念和 C++ 的命名空间类似,是为了防止命名冲突而设定的。如果在 g.op() 里不加前面的命名空间,则算子会被默认成 ONNX 的官方算子。

PyTorch 在运行 g.op() 时会对官方的算子做检查,如果算子名有误,或者算子的输入类型不正确, g.op() 就会报错。为了让我们随心所欲地定义新 ONNX 算子,我们必须设定一个命名空间,给算子取个名,再定义自己的算子。

我们在第一篇教程讲过:ONNX 是一套标准,本身不包括实现。在这里,我们就简略地定义一个 ONNX 可变形卷积算子,而不去写它在某个推理引擎上的实现。在后续的文章中,我们再介绍在各个推理引擎中添加新 ONNX 算子支持的方法。此处,我们只关心如何导出一个包含新 ONNX 算子节点的 onnx 文件。因此,我们可以为新算子编写如下简单的符号函数:

@parse_args("v", "v", "v", "v", "v", "i", "i", "i", "i", "i", "i", "i", "i", "none") 
def symbolic(g,  
        input, 
        weight, 
        offset, 
        mask, 
        bias, 
        stride_h, stride_w, 
        pad_h, pad_w, 
        dil_h, dil_w, 
        n_weight_grps, 
        n_offset_grps, 
        use_mask): 
    return g.op("custom::deform_conv2d", input, offset)

在这个符号函数中,我们以刚刚搜索到的算子输入参数作为符号函数的输入参数,并只用 inputoffset 来构造一个简单的 ONNX 算子。

这段代码中,最令人疑惑的就是装饰器 @parse_args 了。简单来说,TorchScript 算子的符号函数要求标注出每一个输入参数的类型。比如"v"表示 Torch 库里的 value 类型,一般用于标注张量,而"i"表示 int 类型,"f"表示 float 类型,"none"表示该参数为空。具体的类型含义可以在 torch.onnx.symbolic_helper.py (https://github.com/pytorch/pytorch/blob/master/torch/onnx/symbolic_helper.py)中查看。这里输入参数中的 input, weight, offset, mask, bias 都是张量,所以用"v"表示。后面的其他参数同理。我们不必纠结于 @parse_args 的原理,根据实际情况对符号函数的参数标注类型即可。

有了符号函数后,我们通过如下的方式注册符号函数:

register_custom_op_symbolic("torchvision::deform_conv2d", symbolic, 9)

和前面的 register_op 类似,注册符号函数时,我们要输入算子名、符号函数、算子集版本。与前面不同的是,这里的算子集版本是最早生效版本,在这里设定版本 9,意味着之后的第 10 号、第 11 号……版本集都能使用这个新算子。

最后,我们完整的模型导出代码如下:

import torch 
import torchvision 
 
class Model(torch.nn.Module): 
    def __init__(self): 
        super().__init__() 
        self.conv1 = torch.nn.Conv2d(3, 18, 3) 
        self.conv2 = torchvision.ops.DeformConv2d(3, 3, 3) 
 
    def forward(self, x): 
        return self.conv2(x, self.conv1(x)) 
 
from torch.onnx import register_custom_op_symbolic 
from torch.onnx.symbolic_helper import parse_args 
 
@parse_args("v", "v", "v", "v", "v", "i", "i", "i", "i", "i", "i", "i", "i", "none") 
def symbolic(g,  
        input, 
        weight, 
        offset, 
        mask, 
        bias, 
        stride_h, stride_w, 
        pad_h, pad_w, 
        dil_h, dil_w, 
        n_weight_grps, 
        n_offset_grps, 
        use_mask): 
    return g.op("custom::deform_conv2d", input, offset) 
 
register_custom_op_symbolic("torchvision::deform_conv2d", symbolic, 9) 
 
model = Model() 
input = torch.rand(1, 3, 10, 10) 
torch.onnx.export(model, input, 'dcn.onnx')

代码成功运行的话,我们应该能得到如下的 ONNX 模型:

可以看到,我们自定义的 ONNX 算子 deform_conv2d 包含了两个输入,一个输出,和我们预想得一样。

使用 torch.autograd.Function

最后,我们来学习一种简单的为 PyTorch 添加 C++ 算子实现的方法,来代替较为复杂的新增 TorchScript 算子。同时,我们会用 torch.autograd.Function 封装这个新算子。torch.autograd.Function 能完成算子实现和算子调用的隔离。不管算子是怎么实现的,它封装后的使用体验以及 ONNX 导出方法会和原生的 PyTorch 算子一样。这是我们比较推荐的为算子添加 ONNX 支持的方法。

为了应对更复杂的情况,我们来自定义一个奇怪的 my_add 算子。这个算子的输入张量 a, b ,输出 2a + b 的值。我们会先把它在 PyTorch 中实现,再把它导出到 ONNX 中。

为 PyTorch 添加 C++ 拓展

为 PyTorch 添加简单的 C++ 拓展还是很方便的。对于我们定义的 my_add 算子,可以用以下的 C++ 源文件来实现。我们把该文件命名为 "my_add.cpp":

// my_add.cpp 
 
#include <torch/torch.h> 
 
torch::Tensor my_add(torch::Tensor a, torch::Tensor b) 
{ 
    return 2 * a + b; 
} 
 
PYBIND11_MODULE(my_lib, m) 
{ 
    m.def("my_add", my_add); 
}