欢迎您访问 最编程 本站为您分享编程语言代码,编程技术文章!
您现在的位置是: 首页

自适应控制——仿真实验三 用超稳定性理论设计模型参考自适应系统-三、问题求解

最编程 2024-02-06 17:22:50
...

将原题中给定的参考模型和可调系统的传递函数写成输入输出方程的形式:
( 0.0 8 2 p 2 + 2 × 0.08 × 0.75 p + 1 ) y m = r ( T 1 2 p 2 + 2 T 1 ξ 1 p + 1 ) y s f = k 1 r f (17) \begin{gathered} &\left(0.08^{2} p^{2}+2 \times 0.08 \times 0.75 p+1\right) y_{m}=r \\ &\left(T_{1}^{2} p^{2}+2 T_{1} \xi_{1} p+1\right) y_{s f}=k_{1} r_{f} \end{gathered} \tag{17} (0.082p2+2×0.08×0.75p+1)ym=r(T12p2+2T1ξ1p+1)ysf=k1rf(17)
再将上式写成首一古尔维兹多项式的形式:
( p 2 + 2 × 0.08 × 0.75 0.0 8 2 p + 1 0.0 8 2 ) y m = 1 0.0 8 2 r ( p 2 + 2 T 1 ξ 1 T 1 2 + 1 T 1 2 ) y s f = k 1 T 1 2 r f (18) \begin{gathered} \left(p^{2}+\frac{2 \times 0.08 \times 0.75}{0.08^{2}} p+\frac{1}{0.08^{2}}\right) y_{m}=\frac{1}{0.08^{2}} r \\ \left(p^{2}+\frac{2 T_{1} \xi_{1}}{T_{1}^{2}}+\frac{1}{T_{1}^{2}}\right) y_{s f}=\frac{k_{1}}{T_{1}^{2}} r_{f} \end{gathered} \tag{18} (p2+0.0822×0.08×0.75p+0.0821)ym=0.0821r(p2+T122T1ξ1+T121)ysf=T12k1rf(18)
对照(7)式和(11)式,可知相关参数如下:

a m 1 = 2 × 0.08 × 0.75 0.0 8 2 = 18.75 a m 0 = 1 0.0 8 2 = 156.25 b m 0 = 1 0.0 8 2 = 156.25 a s 1 ( v , t ) = 2 T 1 ( t ) ξ 1 ( t ) T 1 2 ( t ) = 2 ( 0.8 − 0.01 t ) ( 0.036 + 0.004 t ) a s 0 ( v , t ) = 1 T 1 2 ( t ) = 1 ( 0.036 + 0.004 t ) 2 b s 0 ( v , t ) = k 1 ( t ) T 1 2 ( t ) = 1.12 − 0.008 t ( 0.036 + 0.004 t ) 2 (19) \begin{aligned} &a_{m 1}=\frac{2 \times 0.08 \times 0.75}{0.08^{2}}=18.75 \\ &a_{m 0}=\frac{1}{0.08^{2}}=156.25 \\ &b_{m 0}=\frac{1}{0.08^{2}}=156.25 \\ &a_{s 1}(v, t)=\frac{2 T_{1}(t) \xi_{1}(t)}{T_{1}^{2}(t)}=\frac{2(0.8-0.01 t)}{(0.036+0.004 t)} \\ &a_{s 0}(v, t)=\frac{1}{T_{1}^{2}(t)}=\frac{1}{(0.036+0.004 t)^{2}} \\ &b_{s 0}(v, t)=\frac{k_{1}(t)}{T_{1}^{2}(t)}=\frac{1.12-0.008 t}{(0.036+0.004 t)^{2}} \end{aligned} \tag{19} am1=0.0822×0.08×0.75=18.75am0=0.0821=156.25bm0=0.0821=156.25as1(v,t)=T12(t)2T1(t)ξ1(t)=(0.036+0.004t)2(0.80.01t)as0(v,t)=T12(t)1=(0.036+0.004t)21bs0(v,t)=T12(t)k1(t)=(0.036+0.004t)21.120.008t(19)

进而可知, a s 1 ( 0 ) ≈ 44.4 a_{s 1}(0) \approx 44.4 as1(0)44.4 a s 0 ( 0 ) ≈ 771.6 a_{s 0}(0) \approx 771.6 as0(0)771.6 b s 0 ( 0 ) ≈ 864.2 b_{s 0}(0) \approx 864.2 bs0(0)864.2

设输出的广义误差为
ε f = y m f − y s f (20) \varepsilon_{f}=y_{m f}-y_{s f} \tag{20} εf=ymfysf(20)
串联补偿器方程为
v = D ( p ) ε f = ( d 1 p + d 0 ) ε f (21) v=D(p) \varepsilon_{f}=\left(d_{1} p+d_{0}\right) \varepsilon_{f} \tag{21} v=D(p)εf=(d1p+d0)εf(21)
选取的自适应规律如下

a s i ( v , t ) = ∫ 0 t φ 1 i ( v , t , τ ) d τ + φ 2 i ( v , t ) + a s i ( 0 ) , i = 0 , 1 b s 0 ( v , t ) = ∫ 0 t ψ 10 ( v , t , τ ) d τ + ψ 20 ( v , t ) + b s 0 ( 0 ) (22) \begin{aligned} a_{s i}(v, t)&=\int_{0}^{t} \varphi_{1 i}(v, t, \tau) d \tau+\varphi_{2 i}(v, t)+a_{s i}(0), i=0,1 \\ b_{s 0}(v, t)&=\int_{0}^{t} \psi_{10}(v, t, \tau) d \tau+\psi_{20}(v, t)+b_{s 0}(0) \end{aligned} \tag{22} asi(v,t)bs0(v,t)=0tφ1i(v,t,τ)dτ+φ2i(v,t)+asi(0),i=0,1=0tψ10(v,t,τ)dτ+ψ20(v,t)+bs0(0)(22)
参考(16)式的形式,可得可调参数的自适应规律如下:
φ 10 = − k a 0 ( t − τ ) v ( τ ) y s f ( τ ) , τ ≤ t φ 20 = − k a 0 ′ ( t ) v ( t ) y s f ( t ) φ 11 = − k a 1 ( t − τ ) v ( τ ) p y s f ( τ ) , τ ≤ t φ 21 = − k a 1 ′ ( t ) v ( t ) p y s f ( t ) ψ 10 = k b 0 ( t − τ ) v ( τ ) r f ( τ ) , τ ⩽ t ψ 20 = k b 0 ′ ( t ) v ( t ) r f ( t ) (23) \begin{aligned} \varphi_{1 0}&=-k_{a 0}(t-\tau) v(\tau) y_{sf}(\tau), \quad \tau \le t \\ \varphi_{2 0}&=-k_{a 0}^{\prime}(t) v(t) y_{s f}(t) \\ \varphi_{1 1}&=-k_{a 1}(t-\tau) v(\tau) p y_{sf}(\tau), \quad \tau \le t \\ \varphi_{2 1}&=-k_{a 1}^{\prime}(t) v(t) p y_{s f}(t) \\ \psi_{1 0}&=k_{b 0}(t-\tau) v(\tau) r_{f}(\tau), \quad \tau \leqslant t \\ \psi_{2 0}&=k_{b 0}^{\prime}(t) v(t) r_{f}(t) \end{aligned} \tag{23} φ10φ20φ11φ21ψ10ψ20=ka0(tτ)v(τ)ysf(τ),τt=ka0(t)v(t)ysf(t)=ka1(tτ)v(τ)pysf(τ),τt=ka1(t)v(t)pysf(t)=kb0(tτ)v(τ)rf(τ),τt=kb0(t)v(t)rf(t)(23)

式中, k a 0 ( t − τ ) k_{a 0}(t-\tau) ka0(tτ) k a 1 ( t − τ ) k_{a 1}(t-\tau) ka1(tτ) k b 0 ( t − τ ) k_{b 0}(t-\tau) kb0(tτ) 为正定积分核, k a 0 ′ ( t ) k_{a 0}^{\prime}(t) ka0(t) k a 1 ′ ( t ) k_{a 1}^{\prime}(t) ka1(t) k b 0 ′ ( t ) k_{b 0}^{\prime}(t) kb0(t) ∀ t ≥ 0 \forall t \ge 0 t0 均为非负标量增益。

下面再讨论一下引入的串联补偿器中的参数 d 0 d_0 d0 d 1 d_1 d1 的取值范围,系统的等价前向线性方块传递函数为:
h ( s ) = d 1 ( s ) + d 0 s 2 + a m 1 s + a m 0 (24) h(s)=\frac {d_1(s)+d_0} {s^2+a_{m1}s+a_{m0}} \tag{24} h(s)=s2+am1s+am0d1(s)+d0(24)
其对应的能控标准型如下:
e ˙ = A m e + b ω 1 v = d T e (25) \begin{aligned} \boldsymbol{\dot e} &= \boldsymbol{A_m} \boldsymbol{e} + b \omega_1 \\ v &= d^T \boldsymbol{e} \end{aligned} \tag{25} e˙v=Ame+bω1=dTe(25)
式中, e = [ ε ε ˙ ] \boldsymbol{e}=\left[ \begin{matrix} \varepsilon \\ \dot \varepsilon \end{matrix} \right] e=[εε˙] A m = [ 0 1 − a m 0 − a m 1 ] \boldsymbol{A_m}=\left[ \begin{matrix} 0 & 1 \\ -a_{m0} & -a_{m1} \end{matrix} \right] Am=[0am01am1] b = [ 0 1 ] b=\left[ \begin{matrix} 0 \\ 1 \end{matrix} \right] b=[01] d = [ d 0 d 1 ] d=\left[ \begin{matrix} d_0 \\ d_1 \end{matrix} \right] d=[d0d1]

要求 h ( s ) h(s) h(s) 是一个严格正实传递函数,则必定存在正定对称矩阵 P P P Q Q Q,使方程式(26)成立:
{ P A m + A m T P = − Q P b = d (26) \left\{ \begin{aligned} &P A_m + A_m^T P = -Q\\ &P b = d \end{aligned} \right. \tag{26} {PAm+AmTP=QPb=d(26)
由此可解得:
d 0 > 0 , d 1 d 0 > 1 a m 1 = 0.053 (27) d_0 > 0, \quad \frac {d_1} {d_0} > \frac {1} {a_{m_1}} =0.053 \tag{27} d0>0,d0d1>am11=0.053(27)

最终搭建的仿真模型框图如 图1 所示:

在这里插入图片描述

图1. 仿真模型框图

具体的 Simulink 仿真文件我已上传至百度网盘中,链接如下:experiment_3.slx_免费高速下载|百度网盘-分享无限制 (baidu.com)

输入信号与广义输出误差信号如 图2 所示:

在这里插入图片描述

图2. 输入信号与广义输出误差信号

输入信号与增益信号如 图3 所示:

在这里插入图片描述

图3. 输入信号与增益信号

输入信号与可调参数1的变化曲线如 图4 所示:

在这里插入图片描述

图4. 输入信号与可调参数1的变化曲线

输入信号与可调参数2的变化曲线如 图5 所示:

在这里插入图片描述

图5. 输入信号与可调参数2的变化曲线