欢迎您访问 最编程 本站为您分享编程语言代码,编程技术文章!
您现在的位置是: 首页

【算法与数据结构】回溯算法、贪心算法、动态规划、图论(笔记三)-十、图论

最编程 2024-02-24 09:18:43
...

10.1 深度优先搜索

  DFS和BFS的区别

  • 深度优先搜索(Depth First Search, DFS)是沿着一个方向搜索,不到黄河不死心,直到遇到绝境了,搜不下去了,再换方向(回溯)。
  • 广度优先搜索(Breadth First Search, BFS)是先把本节点所连接的所有节点遍历一遍,走到下一个节点的时候,再把连接节点的所有节点遍历一遍,搜索的方向是四面八方的,因此被称为广度优先搜索。

  因为DFS搜索就一个方向,并且需要回溯,所以用递归来实现是最方便的。二叉树遍历的递归法是DFS,而二叉树遍历的迭代法是BFS。

void dfs(参数) {
    处理节点
    dfs(图,选择的节点); // 递归
    回溯,撤销处理结果
}

  回溯算法本质上也是一种DFS过程,DFS搜索过程可以笼统的划分为三步。一是确定输入参数;二是确定终止条件;三是处理目前搜索节点的出发路径。

void dfs(输入参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本节点所连接的其他节点) {
        处理节点;
        dfs(图,选择的节点); // 递归
        回溯,撤销处理结果
    }
}

10.2 广度优先搜索

  如果说深搜是一条路跑到黑然后再回溯的搜索方式,那么广搜就是一圈一圈的搜索过程。广搜的搜索方式就适合解决两个点之间最短路径的问题。因为广搜是从起点出发,以起始点为中心一圈一圈进行搜索,一旦遇到终点,记录之前走过的节点就是一条最短路。

10.3 并查集

  并查集是当我们需要判断两个元素是否在同一个集合里的时候,我们就要想到用并查集。并查集常用来解决连通性问题。并查集有以下两个功能:

  • 将两个元素添加到一个集合中。
  • 判断两个元素在不在同一个集合。

  设想我们将三个元素A, B,C(都是int类型)放在同一集合,其实就是将三个元素连通在一起。只需要一个一维数组来表示:father[A] = B, father[B] = C,father[C] = C。当我们使用find函数去寻找数组的元素,如果数组元素的根相同,这样就表示A与B与C连通。

// 将v,u 这条边加入并查集
void join(int u, int v) {
    u = find(u); // 寻找u的根
    v = find(v); // 寻找v的根
    if (u == v) return; // 如果发现根相同,则说明在一个集合,不同两个节点相连直接返回
    father[v] = u;
}

  find函数通过数组下标找到数组元素,一层一层寻根过程,代码如下:

// 并查集里寻根的过程
int find(int u) {
    if (u == father[u]) return u; // 如果根就是自己,直接返回
    else return find(father[u]); // 如果根不是自己,就根据数组下标一层一层向下找
}

  find函数寻根的过程是通过递归的方式,不断获取father数组下标对应的数值,最终找到集合的根。而这很像在一个多叉树中,从叶子节点出发,找到根节点的过程。如果说这颗树的高度很深,每次寻根需要递归很多次。

在这里插入图片描述

  而我们的目的是需要知道这些节点在同一个根下就可以,因此让多茶树的叶子节点直接指向根即可,每次寻根只需要一次。

在这里插入图片描述

  要实现这样的路径压缩过程,只需要在递归过程中,让father[u]接住 递归函数 find(father[u])的返回结果。这样是让u的父节点直接变成find函数返回的根节点。进一步可以用三元表达式精简代码。

// 并查集里寻根的过程
int find(int u) {
    if (u == father[u]) return u;
    else return father[u] = find(father[u]); // 路径压缩
}
int find(int u) {
    return u == father[u] ? u : father[u] = find(father[u]);
}

  同时,father数组初始化的时候要令 father[i] = i,默认指向自己。

// 并查集初始化
void init() {
    for (int i = 0; i < n; ++i) {
        father[i] = i;
    }
}

  如果通过find函数找到两个元素属于同一个根的话,那么这两个元素就是同一个集合,代码如下:

// 判断 u 和 v是否找到同一个根
bool isSame(int u, int v) {
    u = find(u);
    v = find(v);
    return u == v;
}

  结合以上加入并查集join、寻根find、初始化init和判断是否同一集合isSame函数,我们就得到一个并查集完整模板

int n = 1005; // n根据题目中节点数量而定,一般比节点数量大一点就好
vector<int> father = vector<int> (n, 0); // C++里的一种数组结构

// 并查集初始化
void init() {
    for (int i = 0; i < n; ++i) {
        father[i] = i;
    }
}
// 并查集里寻根的过程
int find(int u) {
    return u == father[u] ? u : father[u] = find(father[u]); // 路径压缩
}

// 判断 u 和 v是否找到同一个根
bool isSame(int u, int v) {
    u = find(u);
    v = find(v);
    return u == v;
}

// 将v->u 这条边加入并查集
void join(int u, int v) {
    u = find(u); // 寻找u的根
    v = find(v); // 寻找v的根
    if (u == v) return ; // 如果发现根相同,则说明在一个集合,不同两个节点已经相连,直接返回
    father[v] = u;
}

  总结下来,并查集主要具有三个功能:

  • 1、寻找根节点函数find(int u),也就是判断这个节点的祖先节点是哪个;
  • 2、将两个节点接入到同一集合,join(int u, int v)函数,可以将两个节点连接在同一根节点上;
  • 3、判断两个节点是否在同一集合中,使用isSame(int u, int v)函数,就是判断两个节点是不是同一个根节点。

  复杂度分析

  • 时间复杂度: O ( 1 ) O(1) O(1),真实的复杂度在 O ( l o g n ) O(logn) O(logn) O ( 1 ) O(1) O(1)之间,且随着查询或者合并操作的增加,时间复杂度越来越趋近于 O ( 1 ) O(1) O(1)
  • 空间复杂度: O ( n ) O(n) O(n), 申请一个father数组。