欢迎您访问 最编程 本站为您分享编程语言代码,编程技术文章!
您现在的位置是: 首页

YOLOV5-6.x 解释] 模型构建模块 models/yolo py模型构建模块 models/yolo.py

最编程 2024-03-12 13:40:54
...
# YOLOv5 ???? by Ultralytics, GPL-3.0 license # https://blog.****.net/qq_39237205/category_11911202.html """ YOLO-specific modules 这个模块是yolov5的模型搭建模块,非常的重要,不过代码量并不大,不是很难, 只是yolov5的作者把封装的太好了,模型扩展了很多的额外的功能,导致看起来很难,其实真正有用的代码不多的。 重点是抓住三个函数是在哪里调用的,谁调用谁的。 Usage: $ python path/to/models/yolo.py --cfg yolov5s.yaml """ import argparse # 解析命令行参数模块 import sys # sys系统模块 包含了与Python解释器和它的环境有关的函数 from copy import deepcopy # 数据拷贝模块 深拷贝 from pathlib import Path # Path将str转换为Path对象 使字符串路径易于操作的模块 FILE = Path(__file__).resolve() ROOT = FILE.parents[1] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH # ROOT = ROOT.relative_to(Path.cwd()) # relative from models.common import * from models.experimental import * from utils.autoanchor import check_anchor_order from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args from utils.plots import feature_visualization from utils.torch_utils import fuse_conv_and_bn, initialize_weights, model_info, scale_img, select_device, time_sync # 导入thop包 用于计算FLOPs try: import thop # for FLOPs computation except ImportError: thop = None class Detect(nn.Module): """ Detect模块是用来构建Detect层的,将输入feature map 通过一个卷积操作和公式计算到我们想要的shape, 为后面的计算损失或者NMS作准备 """ stride = None # strides computed during build onnx_dynamic = False # ONNX export parameter 再export中这个参数会重新设为True def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer super().__init__() """ detection layer 相当于yolov3中的YOLOLayer层 :params nc: number of classes :params anchors: 传入3个feature map上的所有anchor的大小(P3、P4、P5) :params ch: [128, 256, 512] 3个输出feature map的channel """ self.nc = nc # number of classes,若是VOC,则类别为20 self.no = nc + 5 # number of outputs per anchor。 若是VOC: 5+20=25 该数为:xywhc+classes self.nl = len(anchors) # number of detection layers Detect的个数 3 self.na = len(anchors[0]) // 2 # number of anchors 每个feature map的anchor个数 3 self.grid = [torch.zeros(1)] * self.nl # init grid {list: 3} tensor([0.]) X 3 self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid # a=[3, 3, 2] anchors以[w, h]对的形式存储 3个feature map 每个feature map上有三个anchor(w,h) # a = torch.tensor(anchors).float().view(self.nl, -1, 2) # register_buffer # 模型中需要保存的参数一般有两种: # 一种是反向传播需要被optimizer更新的,即参与训练的参数称为parameter,optim.step只能更新nn.parameter类型的参数 # 另一种不要被更新,即不参与训练的参数称为buffer,buffer的参数更新是在forward中。 # shape(nl,na,2) # self.register_buffer('anchors', a) self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2) # output conv 对每个输出的feature map都要调用一次conv1x1 self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv # use in-place ops (e.g. slice assignment) 一般都是True 默认不使用AWS Inferentia加速 self.inplace = inplace # use in-place ops (e.g. slice assignment) def forward(self, x): # x:[[],[],[]]分别对应1/8 1/16 1/32 三个维度大小的宽高输入 # forward函数在Model类的forward_once中调用 """ :return train: 一个tensor list 存放三个元素 [bs, anchor_num, grid_w, grid_h, xywh+c+20classes] 分别是 [1, 3, 80, 80, 25] [1, 3, 40, 40, 25] [1, 3, 20, 20, 25] inference: 0 [1, 19200+4800+1200, 25] = [bs, anchor_num*grid_w*grid_h, xywh+c+20classes] 1 一个tensor list 存放三个元素 [bs, anchor_num, grid_w, grid_h, xywh+c+20classes] [1, 3, 80, 80, 25] [1, 3, 40, 40, 25] [1, 3, 20, 20, 25] """ z = [] # inference output for i in range(self.nl): # 对三个feature map分别进行处理,遍历一共多少层 x[i] = self.m[i](x[i]) # conv xi[bs, 128/256/512, 80, 80] to [bs, 75, 80, 80] bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() # inference,预测部分 if not self.training: # inference # 构造网格 # 因为推理返回的不是归一化后的网格偏移量 需要再加上网格的位置 得到最终的推理坐标 再送入nms # 所以这里构建网格就是为了记录每个grid的网格坐标 方面后面使用 if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]: # 第一次运行时候,会实例化这两个属性 self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i) # 拿到左上角的坐标 y = x[i].sigmoid() # 将每一层的特征归一化到0到1之间 if self.inplace: # 默认执行 不使用AWS Inferentia # 这里的公式和yolov3、v4中使用的不一样 是yolov5作者自己用的效果更好,边框预测公式,ppt有 # 计算中心点坐标,将0到1之间处理到原图大小的区间 y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy # xy||||| × self.stride[i]是为了放大到原图 # 计算宽高,将0到1之间处理到原图大小的区间 y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953 xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh y = torch.cat((xy, wh, y[..., 4:]), -1) # z是一个tensor list 三个元素 分别是[1, 19200, 25] [1, 4800, 25] [1, 1200, 25] z.append(y.view(bs, -1, self.no)) return x if self.training else (torch.cat(z, 1), x) def _make_grid(self, nx=20, ny=20, i=0): """ 构造网格 """ d = self.anchors[i].device if check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)], indexing='ij') else: yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)]) grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float() anchor_grid = (self.anchors[i].clone() * self.stride[i]) \ .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float() return grid, anchor_grid class Model(nn.Module): def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes """ Model主要包含模型的搭建与扩展功能,yolov5的作者将这个模块的功能写的很全, 扩展功能如:特征可视化,打印模型信息、TTA推理增强、融合Conv+Bn加速推理、模型搭载nms功能、autoshape函数: 模型搭建包含前处理、推理、后处理的模块(预处理 + 推理 + nms)。 感兴趣的可以仔细看看,不感兴趣的可以直接看__init__和__forward__两个函数即可。 :params cfg:模型配置文件 :params ch: input img channels 一般是3 RGB文件 :params nc: number of classes 数据集的类别个数 :anchors: 一般是None """ super().__init__() if isinstance(cfg, dict): self.yaml = cfg # model dict else: # is *.yaml # is *.yaml 一般执行这里 import yaml # for torch hub self.yaml_file = Path(cfg).name # cfg file name = yolov5s.yaml # 如果配置文件中有中文,打开时要加encoding参数 with open(cfg, encoding='ascii', errors='ignore') as f: # model dict 取到配置文件中每条的信息(没有注释内容) self.yaml = yaml.safe_load(f) # model dict # Define model ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels # 设置类别数 一般不执行, 因为nc=self.yaml['nc']恒成立 if nc and nc != self.yaml['nc']: LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") self.yaml['nc'] = nc # override yaml value # 重写anchor,一般不执行, 因为传进来的anchors一般都是None if anchors: LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}') self.yaml['anchors'] = round(anchors) # override yaml value # 创建网络模型 # self.model: 初始化的整个网络模型(包括Detect层结构) # self.save: 所有层结构中from不等于-1的序号,并排好序 [4, 6, 10, 14, 17, 20, 23] self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist # default class names ['0', '1', '2',..., '19'] self.names = [str(i) for i in range(self.yaml['nc'])] # default names # self.inplace=True 默认True 不使用加速推理 # AWS Inferentia Inplace compatiability # https://github.com/ultralytics/yolov5/pull/2953 self.inplace = self.yaml.get('inplace', True) # 获取Detect模块的stride(相对输入图像的下采样率)和anchors在当前Detect输出的feature map的尺度 # Build strides, anchors m = self.model[-1] # Detect() if isinstance(m, Detect): s = 256 # 2x min stride m.inplace = self.inplace # 计算三个feature map下采样的倍率 [8, 16, 32] # 假设640X640的图片大小,在最后三层时分别乘1/8 1/16 1/32,得到80,40,20 m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # 前向传播的处理,为了得到最后输出的stride的大小 # forward # 将当前图片的大小处理成相对当前feature map的anchor大小 如[10, 13]/8 -> [1.25, 1.625] m.anchors /= m.stride.view(-1, 1, 1) # 检查anchor顺序与stride顺序是否一致 check_anchor_order(m) self.stride = m.stride self._initialize_biases() # only run once # only run once 初始化偏置 # logger.info('Strides: %s' % m.stride.tolist()) # Init weights, biases initialize_weights(self) # 调用torch_utils.py下initialize_weights初始化模型权重 self.info() # 打印模型信息 LOGGER.info('') def forward(self, x, augment=False, profile=False, visualize=False): # augmented inference, None 上下flip/左右flip # 是否在测试时也使用数据增强 Test Time Augmentation(TTA) if augment: return self._forward_augment(x) # augmented inference, None # 默认执行 正常前向推理 # single-scale inference, train return self._forward_once(x, profile, visualize) # single-scale inference, train def _forward_augment(self, x): img_size = x.shape[-2:] # height, width s = [1, 0.83, 0.67] # scales f = [None, 3, None] # flips (2-ud, 3-lr) y = [] # outputs for si, fi in zip(s, f): # scale_img缩放图片尺寸 xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max())) yi = self._forward_once(xi)[0] # forward # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save # _descale_pred将推理结果恢复到相对原图图片尺寸 yi = self._descale_pred(yi, fi, si, img_size) y.append(yi) y = self._clip_augmented(y) # clip augmented tails return torch.cat(y, 1), None # augmented inference, train def _forward_once(self, x, profile=False, visualize=False): """ :params x: 输入图像 :params profile: True 可以做一些性能评估 :params feature_vis: True 可以做一些特征可视化 :return train: 一个tensor list 存放三个元素 [bs, anchor_num, grid_w, grid_h, xywh+c+20classes] 分别是 [1, 3, 80, 80, 25] [1, 3, 40, 40, 25] [1, 3, 20, 20, 25] inference: 0 [1, 19200+4800+1200, 25] = [bs, anchor_num*grid_w*grid_h, xywh+c+20classes] 1 一个tensor list 存放三个元素 [bs, anchor_num, grid_w, grid_h, xywh+c+20classes] [1, 3, 80, 80, 25] [1, 3, 40, 40, 25] [1, 3, 20, 20, 25] """ # y: 存放着self.save=True的每一层的输出,因为后面的层结构concat等操作要用到 # dt: 在profile中做性能评估时使用 y, dt = [], [] # outputs for m in self.model: # 前向推理每一层结构 m.i=index m.f=from m.type=类名 m.np=number of params # if not from previous layer m.f=当前层的输入来自哪一层的输出 s的m.f都是-1 if m.f != -1: # if not from previous layer # 这里需要做4个concat操作和1个Detect操作 # concat操作如m.f=[-1,6] x就有两个元素,一个是上一层的输出,另一个是index=6的层的输出 再送到x=m(x)做concat操作 # Detect操作m.f=[17, 20, 23] x有三个元素,分别存放第17层第20层第23层的输出 再送到x=m(x)做Detect的forward x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers # 打印日志信息 FLOPs time等 # 打印日志信息 前向推理时间 if profile: self._profile_one_layer(m, x, dt) x = m(x) # run正向推理 执行每一层的forward函数(除Concat和Detect操作) # print('层数',i,'特征图大小',x.shape) # 存放着self.save的每一层的输出,因为后面需要用来作concat等操作要用到 不在self.save层的输出就为None y.append(x if m.i in self.save else None) # save output # 特征可视化 可以自己改动想要哪层的特征进行可视化 if visualize: feature_visualization(x, m.type, m.i, save_dir=visualize) return x def _descale_pred(self, p, flips, scale, img_size): """ 用在上面的__init__函数上 将推理结果恢复到原图图片尺寸 Test Time Augmentation(TTA)中用到 de-scale predictions following augmented inference (inverse operation) :params p: 推理结果 :params flips: :params scale: :params img_size: """ # 不同的方式前向推理使用公式不同 具体可看Detect函数 # de-scale predictions following augmented inference (inverse operation) if self.inplace: # 默认执行 不使用AWS Inferentia p[..., :4] /= scale # de-scale if flips == 2: p[..., 1] = img_size[0] - p[..., 1] # de-flip ud elif flips == 3: p[..., 0] = img_size[1] - p[..., 0] # de-flip lr else: x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale if flips == 2: y = img_size[0] - y # de-flip ud elif flips == 3: x = img_size[1] - x # de-flip lr p = torch.cat((x, y, wh, p[..., 4:]), -1) return p def _clip_augmented(self, y): # Clip YOLOv5 augmented inference tails nl = self.model[-1].nl # number of detection layers (P3-P5) g = sum(4 ** x for x in range(nl)) # grid points e = 1 # exclude layer count i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e)) # indices y[0] = y[0][:, :-i] # large i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices y[-1] = y[-1][:, i:] # small return y

上一篇: YOLO 系列梳理 (I) YOLOv1-YOLOv3

下一篇: yolov5 调用 USB 摄像机和本地摄像机方法示例